Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)
Do \(a+b+c=0\)
\(\Rightarrow a^3+b^3+c^3-3abc=0\Rightarrow a^3+b^3+c^3=3abc\)
a+b+c=0\(\Rightarrow\)a+b= -c
\(\Rightarrow\)(a+b)^3=(-c)^3\(\Rightarrow\)a^3+3a^2b+3ab^2= -c^3
\(\Rightarrow\)a^3+b^3+c^3= -3ab(a+b)
\(\Rightarrow\)a^3+b^3+c^3=3abc
Lời giải:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow (a+b)^3-3ab(a+b)+c^3-3abc=0\)
\(\Leftrightarrow (a+b)^3+c^3-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)=0\)
\(\Leftrightarrow (a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0\)
\(\Rightarrow \left[\begin{matrix} a+b+c=0\\ a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)
Với $a^2+b^2+c^2-ab-bc-ac=0$
$\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2=0$
$\Rightarrow (a-b)^2=(b-c)^2=(c-a)^2=0$
$\Leftrightarrow a=b=c$
Do đó ta có đpcm.
Ta có : a3 + b3 + c3 = 3abc
=> a3 + b3 + c3 -3abc = 0
=> ( a + b )3 - 3ab( a - b ) + c3 -3abc = 0
=> ( a + b )3 + c3- [(3ab( a +b) + 3abc] =0
=> ( a + b + c)[( a + b )2 - (a+b)c + c2 ] - 3ab( a+b +c ) = 0
=> ( a + b + c)( a2 + 2ab + b2 - ac -bc + c2 - 3ab) = 0
=> ( a + b + c )( a2 + b2 + c2 + ab - bc - ac ) = 0
=> a + b + c = 0 ( đpcm ) hoặc có thể là a = b = c ( đpcm ) nhé.
a + b + c = 0
=> a + b = - c
=> ( a + b )3 = - c3
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3a^2b-3ab^2\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(-c\right)\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\) ( đpcm )
Ta dễ có được
\(a+b+c=0\Rightarrow a+b=-c\Rightarrow\left(a+b\right)^3=-c^3\)
\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\Rightarrow a^3+b^3+c^3=-3ab\left(a+b\right)=-3ab\left(-c\right)=3abc\)
Suy ra điều cần chwgns minh
1) Có: \(a+b+c=0\)
\(\Leftrightarrow a+b=-c\)
\(\Leftrightarrow\left(a+b\right)^3=-c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3-3abc=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\)
2)Có: \(a+b-c=0\)
\(\Leftrightarrow a+b=c\)
\(\Leftrightarrow\left(a+b\right)^3=c^3\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=c^3\)
\(\Leftrightarrow a^3+b^3+3abc=c^3\)
\(\Leftrightarrow a^3+b^3-c^3=-3abc\)
Ta có: \(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)+3abc\)
\(=\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)^3-3\left(a+b+c\right)\left(ac+bc+ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) (đúng với a,b,c>0)
\(a^3+b^3+c^3\ge3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc\ge0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\ge0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\ge0\) (*)
Do a,b,c > 0 => \(a+b+c>0\) (1)
Áp dụng BĐT Cauchy ta có:
\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge2ca\)
suy ra: \(2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\)\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\Leftrightarrow\) \(a^2+b^2+c^2-ab-bc-ca\ge0\) (2)
Dấu "=" xảy ra <=> \(a=b=c\)
Từ (1) và (2) => BĐT (*) đc chứng minh
Bài 2:
a+b+c+d=0
nên b+c=-(a+d)
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)
\(=\left(b+c\right)\left(3ad-3bc\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
ta có: a3+b3+c3-3abc
<=>a^3+3a^2b+3ab2+b3+c3-3a^2b-3ab^2-3abc
<=>(a+b)^3+c^3-3ab(a+b+c)
<=>(a+b+c)[(a+b)^2-c(a+b)+c^2.... tự làm bước tiếp
a/ \(a+b+c=0\)
\(\Leftrightarrow\left(a+b+c\right)^3=0\)
\(\Leftrightarrow\left[\left(a+b\right)+c\right]^3=0\)
\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=0\)
\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3bc^2+3b^2c+3a^2c+3ac^2+6abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)+\left(3ac^2+3a^2c+3abc\right)-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3+3abc\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)
Mà \(a+b+c=0\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)
Giả sử a3 + b3 + c3 = 3abc, ta có :
a3 + b3 + c3 - 3abc = 0
Đưa về hằng đẳng thức mở rộng a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)
<=> (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0
Mà a + b + c = 0
=> 0.(a2 + b2 + c2 - ab - bc - ca) = 0 (đúng)
Vậy , với a + b + c = 0 thì
a3 + b3 + c3 = 3abc