K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2018

\(\left(a^2+b^2\right)\left(\frac{1}{a^2}+\frac{1}{b^2}\right)\ge4\)

\(\Leftrightarrow1+\frac{a^2}{b^2}+\frac{b^2}{a^2}+1-4\ge0\)

\(\Leftrightarrow\frac{a^4+b^4-2a^2b^2}{a^2b^2}\ge0\)

\(\Leftrightarrow\frac{\left(a^2-b^2\right)^2}{a^2b^2}\ge0\) (luôn đúng)

Vậy...

ban oi a^2+b^2+c^2= a^2+b^2+c^2 là chuyện đương nhiên mà bạn

22 tháng 12 2019

quên là (a+b+c)2=a2+b2+c2    xin lỗi nha

8 tháng 2 2020

Bạn từ chứng minh BĐT đầu bài.

a) Áp dụng: \(VT\le\frac{1}{ab\left(a+b\right)+abc}+\frac{1}{bc\left(b+c\right)+abc}+\frac{1}{ca\left(c+a\right)+abc}\) 

\(=\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{1}{a+b+c}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

b) Với abc = 1. Ta viết BĐT lại thành:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{abc}\)

Sử dụng cách chứng minh ở câu a.

c) Đặt \(\left(a;b;c\right)=\left(x^3;y^3;z^3\right)\) thì xyz = 1; x, y, z > 0. Đưa về chứng minh:

\(\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le1\)

Cách chứng minh tương tự câu b.

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

NV
17 tháng 6 2020

a/ \(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

b/ \(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

c/ \(\Leftrightarrow a^2+2a< a^2+2a+1\)

\(\Leftrightarrow0< 1\) (hiển nhiên đúng)

d/ \(\Leftrightarrow m^2-2m+1+n^2-2n+1\ge0\)

\(\Leftrightarrow\left(m-1\right)^2+\left(n-1\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(m=n=1\)

e/ \(\Leftrightarrow1+\frac{a}{b}+\frac{b}{a}+1\ge4\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

4 tháng 4 2020

a/CM: \(\left(\frac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng với mọi a,b>0)

CM: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)

\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

b/CM: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{4\left(a^3+b^3\right)}{8}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng với mọi a,b>0)

c/CM: \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2+ab\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+\frac{2ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right)\ge0\) ( luôn đúng)

d/Ta xét hiệu: \(a^4-4a+3\)

\(=a^4-2a^2+1+2a^2-4a+2\)

\(=\left(a-1\right)^2+2\left(a-1\right)^2\ge0\)

Suy ra BĐT luôn đúng

e/Ta xét hiệu:( Làm nhanh)

\(a^3+b^3+c^3-3abc\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)

f/Ta có: \(\frac{a^6}{b^2}-a^4+\frac{a^2b^2}{4}+\frac{b^6}{a^2}-b^4+\frac{a^2b^2}{4}\)

\(=\left(\frac{a^3}{b}-\frac{ab}{2}\right)^2+\left(\frac{b^3}{a}-\frac{ab}{2}\right)^2\ge0\)(1)

\(\frac{a^2b^2}{4}+\frac{a^2b^2}{4}\ge0\)(2)

Lấy (1) trừ (2) được: \(\frac{a^6}{b^2}+\frac{b^6}{a^2}-a^4-b^4\ge0\RightarrowĐPCM\)

g/Làm rồi..xem lại trong trang cá nhân

h/Xét hiệu có: \(\left(a^5+b^5\right)\left(a+b\right)-\left(a^4+b^4\right)\left(a^2+b^2\right)\)

\(=a^5b+ab^5-a^2b^4-a^4b^2\)

\(=a^4b\left(a-b\right)-ab^4\left(a-b\right)\)

\(=ab\left(a^2-b^2\right)\left(a-b\right)\)

\(=ab\left(a+b\right)\left(a-b\right)^2\ge0\forall ab>0\)

Suy ra ĐPCM

11 tháng 5 2017

Bài 2 :

Ta có :

\(\frac{a^2}{b^2+c^2}-\frac{a}{b+c}=\frac{a^2b-ab^2+a^2c-ac^2}{\left(b+c\right)\left(b^2+c^2\right)}=\frac{ab\left(a-b\right)+ac\left(a-c\right)}{\left(b+c\right)\left(b^2+c^2\right)}\)( 1 )

\(\frac{b^2}{c^2+a^2}-\frac{b}{c+a}=\frac{bc\left(b-c\right)+ab\left(b-a\right)}{\left(c+a\right)\left(c^2+a^2\right)}\)( 2 )

\(\frac{c^2}{a^2+b^2}-\frac{c}{a+b}=\frac{ac\left(c-a\right)+bc\left(c-c\right)}{\left(a+b\right)\left(a^2+b^2\right)}\)  ( 3 )

Cộng ( 1 ) , ( 2 ) , ( 3 ) ta được : 

\(\left(\frac{a^2}{b^2+c^2}+\frac{b^2}{c^2+a^2}+\frac{c^2}{a^2+b^2}\right)-\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

\(=ab\left(a-b\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}\right]\)

\(+ac\left(a-c\right)\left[\frac{1}{\left(b+c\right)\left(b^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b62\right)}\right]\)

\(+bc\left(b-c\right)\left[\frac{1}{\left(a+c\right)\left(a^2+c^2\right)}-\frac{1}{\left(a+b\right)\left(a^2+b^2\right)}\right]\)

Theo đề bài thì  \(a,b,c>0\)( các biểu thức trong các dấu ngoặc đều không âm ) \(\Leftrightarrow dpcm\)

Thấy đúng thì tk nka !111

12 tháng 5 2017

Bài 3:

ta có :    \(a^4+b^4\ge2a^2b^2\)

Cộng    \(a^4+b^4\)  vào 2 vế ta được:  

\(2\left(a^4+b^4\right)\ge\left(a^2+b^2\right)^2\)\(\Leftrightarrow a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)^2\)

Ta cũng có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\)

                  \(\Leftrightarrow a^4+b^4\ge\frac{1}{8}\left(a+b\right)^4\)

mà theo bài thì   \(a+b>1\)\(\Rightarrow dpcm\)

TK MK NKA !!!