Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng công thức \(\frac{n\left(n-1\right)}{2}\)
<=>\(\frac{114\cdot\left(114-1\right)}{2}\)
<=> A =6441
A=1+2-3-4+5+6-7-8+...-111-112+113+114
A=1+(2-3-4+5)+(6-7-8+9)+...+(110-111-112+113)+114
A=1+ 0 +0 +.........+0+114
A=115
a) \(3.\left(10.x\right)=111\)
\(10.x=37\)
\(x=\dfrac{37}{10}\)
b) \(3.\left(10+x\right)=111\)
\(10+x=37\)
\(x=27\)
c) \(3+\left(10.x\right)=111\)
\(10.x=108\)
\(x=\dfrac{54}{5}\)
d) \(3+\left(10+x\right)=111\)
\(x=111-3-10\)
\(x=98\)
a) \(-312+13×\left(\:x-1\right)=\:-113\div213\)
\(-312 +13×\left(x-1\right)=-\frac{113}{213}\)
\(13×\:\left(x-1\right)=-\frac{113}{213}+312\)
\(13×\left(x-1\right)=311\)
\(x-1=311\div13\)
\(x-1=\frac{311}{13}\)
\(x=\frac{311}{13}+1\)
\(x=\frac{324}{13}\)
Vậy, \(x =\frac{324}{13}\)
Cbht
b) \(x-14=x-25\)
\(x-x =14-25\)
\(0= -11\)
=> x không tồn tại
Cbht
Ta có: \(\frac{x}{113}=\frac{113}{x}\Rightarrow xx=113.113\)
hay \(x^2=113^2\)
\(\Rightarrow x=113;x=-113\)
mà giá trị \(x< 0\) \(\Rightarrow x=-113\)
Vậy \(x=-113\)
\(\frac{x}{113}=\frac{113}{x}\)
\(\Rightarrow x^2=113^2\)
\(\Rightarrow x=113\) hoặc \(x=-113\)
Vậy \(x=113\) hoặc \(x=-113\)
Ta có: \(\frac{x}{113}=\frac{113}{x}\) <=> \(x^2=12769\)
<=> \(x=\sqrt{12769}\)
<=> \(\left[\begin{matrix}x=113 \left(ko thỏa mãn\right)\\x=-113 \left(thỏa mãn x< 0\right)\end{matrix}\right.\)
Vậy x=-113
a) P(x) = x2 + x4 + x6 + x8 + ... + x100
P(-1) = (-1)2 + (-1)4 + (-1)6 + (-1)8 + ... + (-1)100
P(-1) = 1 + 1 + 1 + 1 + ... + 1
P(-1) = 1 . 50
P(-1) = 50
b) Q(x) = x + x3 + x5 + x7 + ... + x111
Q(-1) = (-1) + (-1)3 + (-1)5 + (-1)7 + ... + (-1)111
Q(-1) = (-1) + (-1) + (-1) + (-1) + ... + (-1)
Q(-1) = (-1) . 56
Q(-1) = -56
Câu 1 : Đặt A = 1.2.3 + 2.3.4 + ... + 111.112.113
=> 4A = 1.2.3.4 + 2.3.4.4 + ... + 111.112.113.4
= 1.2.3.4 + 2.3.4.(5 - 1) + .... + 111.112.113.(114 - 110)
= 1.2.34 + 2.3.4.5 - 1.2.3.4 + ... + 111.112.113.114 - 110.111.112.113
= 111.112.113.114
=> A = 111.113.114.28 = 40 037 256
Câu 2 Đặt A = 1.2 + 2.3 + 3.4 + ... + 277.278
=> 3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 277.278.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 277.278.(279 - 276)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 277.278.279 - 276.277.278
= 277.278.279
=> A = 7161558
3) Đặt A = 1.4 + 2.5 + ... + 277.280
= 1.(2 + 2) + 2.(2 + 3) + ... + 277.(278 + 2)
= (1.2 + 2.3 + .... + 277.278) + 2(1 + 2 + .... 277)
Đặt B = 1.2 + 2.3 + .... + 277.278
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 277.278.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 277.278.(279 - 276)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 277.278.279 - 276.277.278
= 277.278.279
=> B = 7161558
Khi đó A = B + 2(1 + 2 + .... 277)
= 7161558 + 2.277(277 + 1) : 2
= 7238564
Câu 4 : \(\left(\frac{2^2}{2.4}+\frac{2^2}{4.6}+...+\frac{2^2}{34.36}\right)x-1\frac{1}{6}=1\frac{2}{3}\)
=> \(2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{34.36}\right)x-\frac{7}{6}=\frac{5}{3}\)
=> \(2\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{34}-\frac{1}{36}\right)x=\frac{17}{6}\)
=> \(\left(\frac{1}{2}-\frac{1}{36}\right)x=\frac{17}{12}\)
=> x = 3
Câu 5 : Đặt A = 1 + 2 + 22 + ... + 29 (1)
=> 2A = 2 + 22 + 23 + ... + 210 (2)
Lấy (2) trừ (1) theo vế ta có :
2A - A = (2 + 22 + 23 + ... + 210) - ( 1 + 2 + 22 + ... + 29)
A = 210 - 1 = 1024 - 1 = 1023
Câu 6 : Đặt A = 12 + 22 + 32 + .... + 1002
= 1.1 + 2.2 + 3.3 + ... + 100.100
= 1.(2 - 1) + 2(3 - 1) + 3(4 - 1) + ... + 100(101 - 1)
= (1.2 + 2.3 + 3.4 + ... + 100.101) - (1 + 2 + 3 + 4 + ... + 100)
Đặt B = 1.2 + 2.3 + 3.4 + ... + 100.101
=> 3B = 1.2.3 + 2.3.3 + 3.4.3 + ... + 100.101.3
= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 100.101(102 - 99)
= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 100.101.102 - 99.100.101
= 100.101.102
=> B = 343400
Khi đó A = B - (1 + 2 + 3 + 4 + ... + 100)
= 343 400 - [100.(100 + 1) : 2]
= 338 350
\(x+110+x+111+x+112=x+113+x+114\)
\(\Leftrightarrow3x+333=2x+227\)
\(\Leftrightarrow3x-2x=227-333\)
\(\Leftrightarrow x=-106\)
Vậy \(x=-106\)