K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 7 2018

a) ĐK: \(x\geq \frac{1}{2}\)

Ta có: \(\sqrt{2x-1}-\sqrt{x+1}=2x-4\)

\(\Leftrightarrow \frac{(2x-1)-(x+1)}{\sqrt{2x-1}+\sqrt{x+1}}=2(x-2)\)

\(\Leftrightarrow \frac{x-2}{\sqrt{2x-1}+\sqrt{x+1}}=2(x-2)\)

\(\Leftrightarrow (x-2)\left(\frac{1}{\sqrt{2x-1}+\sqrt{x+1}}-2\right)=0\)

\(\Rightarrow \left[\begin{matrix} x-2=0\leftrightarrow x=2\\ \frac{1}{\sqrt{2x-1}+\sqrt{x+1}}=2(*)\end{matrix}\right.\)

Đối với $(*)$:

\(x\geq \frac{1}{2}\Rightarrow \sqrt{2x-1}+\sqrt{x+1}\geq \sqrt{\frac{1}{2}+1}>1\)

\(\Rightarrow \frac{1}{\sqrt{2x-1}+\sqrt{x+1}}< 1\)

Do đó $(*)$ vô nghiệm

Vậy pt có nghiệm duy nhất $x=2$

AH
Akai Haruma
Giáo viên
18 tháng 7 2018

b) ĐK:.....

\(\sqrt{2x^2-3x+10}+\sqrt{2x^2-5x+4}=x+3\)

TH1:

\(\sqrt{2x^2-3x+10}=\sqrt{2x^2-5x+4}\)

\(\Rightarrow 2x^2-3x+10=2x^2-5x+4\)

\(\Rightarrow 2x+6=0\Rightarrow x=-3\) (thử lại thấy không thỏa mãn)

TH2: \(\sqrt{2x^2-3x+10}\neq \sqrt{2x^2-5x+4}\), tức là \(x\neq -3\)

PT ban đầu tương đương với:

\(\frac{(2x^2-3x+10)-(2x^2-5x+4)}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=x+3\)

\(\Leftrightarrow \frac{2(x+3)}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=x+3\)

\(\Leftrightarrow \frac{2}{\sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}}=1\) (do \(x\neq -3\) )

\(\Rightarrow \sqrt{2x^2-3x+10}-\sqrt{2x^2-5x+4}=2\)

\(\Rightarrow \sqrt{2x^2-3x+10}=2+\sqrt{2x^2-5x+4}\)

Bình phương 2 vế:

\(2x^2-3x+10=4+2x^2-5x+4+4\sqrt{2x^2-5x+4}\)

\(\Leftrightarrow x+1=2\sqrt{2x^2-5x+4}\)

\(\Rightarrow (x+1)^2=4(2x^2-5x+4)\)

\(\Rightarrow 7x^2-22x+15=0\Rightarrow \left[\begin{matrix} x=\frac{15}{7}\\ x=1\end{matrix}\right.\) (thử đều thấy t/m)

Vậy...........

 

 

 

20 tháng 7 2019

a) Do VT >=0 nên VP >=0 nên \(x\ge4\)

\(PT\Leftrightarrow\left(x-2\right)-\sqrt{x-2}-2=0\)

Đặt \(\sqrt{x-2}=t\ge\sqrt{4-2}=\sqrt{2}\) thì \(t^2-t-2=0\)

\(\Leftrightarrow t=2\left(loại t = -1 vì nó không thỏa mãn đk\right)\Leftrightarrow x-2=4\Leftrightarrow x=6\)

20 tháng 7 2019

b) (sai thì thôi nha) Dễ thấy x = 4 là một nghiệm

Xét x khác 4:ĐK: \(x>4\)(1) . Mặt khác do VT > 0 nên VP > 0 suy ra x < 4(2)

Do x không thể đồng thời thỏa mãn (1) và (2) nên vô nghiệm.

Vậy x = 4

15 tháng 7 2018

a) Ta có pt \(\Leftrightarrow\sqrt{\left(x-3\right)^2}=\sqrt{\left(\sqrt{3}+1\right)^2}\Leftrightarrow\left|x-3\right|=\sqrt{3}+1...\)

b) Ta có pt \(\Leftrightarrow\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}=1\Leftrightarrow\left|x-1\right|+\left|x+2\right|=1\)

đến đây tự phá dấu trị tuyệt đối !

^_^

30 tháng 8 2019

a,\(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\) (*)(đk \(x\ge-2\))

<=> \(\sqrt{\left(x+2\right)-4\sqrt{x+2}+4}+\sqrt{\left(x+2\right)-6\sqrt{x+2}+9}\)=1

<=> \(\sqrt{\left(\sqrt{x+2}-2\right)^2}+\sqrt{\left(\sqrt{x+2}-3\right)^2}=1\)

<=> \(\left|\sqrt{x+2}-2\right|+\left|\sqrt{x+2}-3\right|\)=1 (1)

TH1: \(0\le\sqrt{x+2}< 2\)

Từ (1) =>\(2-\sqrt{x+2}+3-\sqrt{x+2}=1\)

<=> \(5-2\sqrt{x+2}=1\) <=> \(2\sqrt{x+1}=4\) <=> \(\sqrt{x+1}=2\)

<=> \(x+1=4\) <=> x=3(không t/m \(\sqrt{x+2}\le2\))

TH2 : \(2\le\sqrt{x+2}\le3\)

Từ (1) =>\(\sqrt{x+2}-2+3-\sqrt{x+2}=1\)

<=> \(1=1\) (luôn đúng)

Từ TH2 <=> 4\(\le x+2\le9\) <=> \(2\le x\le7\)

TH3 \(\sqrt{x+2}>3\)

Từ (1) => \(\sqrt{x+2}-2+\sqrt{x+2}-3=1\)

<=> \(2\sqrt{x+2}=6\) <=> \(\sqrt{x+2}=3\) <=> \(x+2=9\) <=> x=7 (không t/m \(\sqrt{x+2}>3\))

Vậy pt (*) có tập nghiệm S=\(\left\{2\le x\le7\right\}\)

b, \(x^2-10x+27=\sqrt{6-x}+\sqrt{x-4}\) (*) (đk :\(4\le x\le6\))

Vs a,b \(\ge0\) ta có \(\sqrt{a}+\sqrt{b}\le\sqrt{2\left(a^2+b^2\right)}\)(tự CM nha)

Dấu "=" xảy ra <=> a=b

Áp dụng bđt trên ta có: \(\sqrt{6-x}+\sqrt{x-4}\le\sqrt{2\left(6-x+x-4\right)}=\sqrt{2.2}=2\)

<=> \(\sqrt{6-x}+\sqrt{x-4}\le2\)(1)

Lại có: \(x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

<=> \(x^2-10x+27\ge2\) (2)

Từ (1),(2) => Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}6-x=x-4\\x-5=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}6+4=2x\\x=5\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=5\\x=5\end{matrix}\right.\left(tm\right)\)

Vậy pt (*) có tập nghiệm S=\(\left\{5\right\}\)

c, \(x^2-2x-x\sqrt{x}-2\sqrt{x}+4=0\)(*) (đk: x\(\ge0\))

<=> \(x\left(x-2\right)-\sqrt{x}\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\left(x-\sqrt{x}\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\sqrt{x}\left(\sqrt{x}-1\right)\left(x-2\right)-4\left(\sqrt{x}-1\right)=0\)

<=> \(\left(\sqrt{x}-1\right)\left[\sqrt{x}\left(x-2\right)-4\right]=0\)

<=> \(\left[{}\begin{matrix}\sqrt{x}-1=0\\\sqrt{x}\left(x-2\right)-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}\left(x-2\right)=4\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x\left(x-2\right)^2=16\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x\left(x^2-4x+4\right)-16=0\end{matrix}\right.\) <=>\(\left[{}\begin{matrix}x=1\\x^3-4x^2+4x-16=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=1\\x^2\left(x-4\right)+4\left(x-4\right)=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\\left(x^2+4\right)\left(x-4\right)=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x-4=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\left(tm\right)\)

Vậy pt (*) có tập nghiệm S=\(\left\{1;4\right\}\)

31 tháng 8 2019

d) x2+3x+1=(x+3)\(\sqrt{x^2+1}\)

<=>(\(\sqrt{x^2+1}-3x+3\sqrt{x^2+1}-\left(x^2+1\right)=0\)

<=>\(\left(\sqrt{x^2+1}-3\right)\left(x-\sqrt{x^2+1}\right)=0\)

<=>\(\sqrt{x^2+1}=3\) hoặc \(x=\sqrt{x^2+1}\)

=>x=\(2\sqrt{2}\)

27 tháng 4 2020

f) ĐKXĐ: \(x\ge-\frac{3}{2}\)

Khi đó VT > 0 nên \(VT>0\Rightarrow\left[{}\begin{matrix}x\ge2\\x\le-3\left(L\right)\end{matrix}\right.\)

Lũy thừa 6 cả 2 vế lên PT tương đương:

\( \left( x-3 \right) \left( {x}^{11}+9\,{x}^{10}+6\,{x}^{9}-142\,{x}^{ 8}-231\,{x}^{7}+1113\,{x}^{6}+2080\,{x}^{5}-4604\,{x}^{4}-6908\,{x}^{3 }+13222\,{x}^{2}+10983\,x-15327 \right) =0\)

Cái ngoặc to vô nghiệm vì nó tương đương:

\(\left( x-2 \right) ^{11}+31\, \left( x-2 \right) ^{10}+406\, \left( x -2 \right) ^{9}+2906\, \left( x-2 \right) ^{8}+12281\, \left( x-2 \right) ^{7}+31031\, \left( x-2 \right) ^{6}+46656\, \left( x-2 \right) ^{5}+46648\, \left( x-2 \right) ^{4}+46452\, \left( x-2 \right) ^{3}+44590\, \left( x-2 \right) ^{2}+36015\,x-55223 = 0\)(vô nghiệm với mọi \(x\ge2\))

Vậy x = 3.

PS: Nghiệm đẹp thế này chắc có cách AM-Gm độc đáo nhưng mình chưa nghĩ ra

25 tháng 4 2020

@Akai Haruma, @Nguyễn Việt Lâm

giúp em vs ạ! Cần gấp ạ

em cảm ơn nhiều!