K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2022

a: Sửa đề: \(A=\left(\dfrac{\sqrt{x}+1}{x-1}-\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)

\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2\cdot\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{4\sqrt{x}\left(\sqrt{x}-1\right)}{2}=2\sqrt{x}\left(\sqrt{x}-1\right)\)

b: Để A>0 thì căn x-1>0

=>x>1

31 tháng 10 2021

\(a,A=\dfrac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{x-2-x+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ A=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}}\)

18 tháng 5 2018

a) Ta có:

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\left(\frac{2\sqrt{x}\left(\sqrt{x-3}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{3x+3}{x-9}\right):\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\left(\frac{2x-6}{x-9}+\frac{x+3\sqrt{x}}{x-9}-\frac{3x+3}{x-9}\right):\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

\(=\frac{2x-6+x+3\sqrt{x}-3x-3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\frac{3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+3}\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\)

b) \(P< \frac{-1}{2}\Rightarrow\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}< \frac{-1}{2}\)

.....Chưa nghĩ ra....

c) Ta có: \(\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)^2}\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Rightarrow x=9\)

Vậy Min P = 0 khi x =9.

k - kb với tớ nhia mn!

6 tháng 7 2021

\(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}}\right).\dfrac{\left(1-x\right)^2}{2}\) (ĐK:\(x>0;x\ne1\))

\(=\left[\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\right].\dfrac{\left(x-1\right)^2}{2}\)

\(=\left[\dfrac{\left(\sqrt{x}-2\right)\sqrt{x}}{\left(x-1\right)\sqrt{x}}-\dfrac{x-1}{\sqrt{x}\left(x-1\right)}\right].\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-2\sqrt{x}-x+1}{\sqrt{x}\left(x-1\right)}.\dfrac{\left(x-1\right)^2}{2}=\dfrac{-2\sqrt{x}+1}{\sqrt{x}\left(x-1\right)}.\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\left(-2\sqrt{x}+1\right)\left(x-1\right)}{2\sqrt{x}}\) 

Sai đề ko em?

a) Ta có: \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}}\right)\cdot\dfrac{\left(1-x\right)^2}{2}\)

\(=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}}\right)\cdot\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)-\left(x-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2}\)

\(=\dfrac{x-2\sqrt{x}-x+1}{\sqrt{x}}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{2}\)

\(=\dfrac{\left(-2\sqrt{x}+1\right)\left(x-1\right)}{2\sqrt{x}}\)

13 tháng 7 2021

a) ĐKXĐ: \(x\ge0,x\ne1\)

\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)

\(=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{x+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)

\(=\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}-1}=\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\left(\sqrt{x}-1\right)\)

\(=\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)

b) \(P=\sqrt{x}-1\Rightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\Rightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(\Rightarrow4\sqrt{x}=x-1\Rightarrow x-4\sqrt{x}-1=0\)

\(\Delta=\left(-4\right)^2-4.\left(-1\right)=20\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{4-2\sqrt{5}}{2}=2-\sqrt{5}\\\sqrt{x}=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{4+2\sqrt{5}}{2}=2+\sqrt{5}\end{matrix}\right.\)

mà \(\sqrt{x}\ge0\Rightarrow\sqrt{x}=2+\sqrt{5}\Rightarrow x=9+4\sqrt{5}\)

c) \(P=\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\dfrac{4\left(\sqrt{x}+1\right)-4}{\sqrt{x}+1}=4-\dfrac{4}{\sqrt{x}+1}\)

Để \(P\in Z\Rightarrow4⋮\sqrt{x}+1\Rightarrow\sqrt{x}+1\in\left\{1;2;4\right\}\left(\sqrt{x}+1\ge1\right)\)

\(\Rightarrow x\in\left\{0;1;9\right\}\) mà \(x\ne1\Rightarrow x\in\left\{0;9\right\}\)

 

13 tháng 7 2021

Từ khúc có \(x-4\sqrt{x}-1=0\)

Ta có: \(\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)=4-5=-1\)

Thế vào \(\Rightarrow x-4\sqrt{x}+\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)=0\)

\(\Rightarrow x-\sqrt{x}\left(2-\sqrt{5}+2+\sqrt{5}\right)+\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)=0\)

\(\Rightarrow x-\left(2-\sqrt{5}\right)\sqrt{x}-\left(2+\sqrt{5}\right)\sqrt{x}+\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)=0\)

\(\Rightarrow\sqrt{x}\left(\sqrt{x}-\left(2-\sqrt{5}\right)\right)-\left(2+\sqrt{5}\right)\left(\sqrt{x}-\left(2-\sqrt{5}\right)\right)=0\)

\(\Rightarrow\left(\sqrt{x}-\left(2-\sqrt{5}\right)\right)\left(\sqrt{x}-\left(2+\sqrt{5}\right)\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=2-\sqrt{5}\\\sqrt{x}=2+\sqrt{5}\end{matrix}\right.\) rồi khúc sau như trên

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{9;4\right\}\end{matrix}\right.\)

b: Ta có: \(P=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)

\(=\dfrac{2\sqrt{x}-9+2x-3\sqrt{x}-2-x+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Bài 1: 

a: \(A=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\cdot\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\)

\(=\dfrac{\left(x-1\right)^2}{4x}\cdot\dfrac{-4\sqrt{x}}{x-1}=\dfrac{-\left(x-1\right)}{\sqrt{x}}\)

b: Để B<0 thì -x+1<0

=>-x<-1

hay x>1

c: Để B=2 thì \(-\left(x-1\right)=2\sqrt{x}\)

\(\Leftrightarrow-x+1-2\sqrt{x}=0\)

\(\Leftrightarrow x+\sqrt{x}-1=0\)

\(\Leftrightarrow\sqrt{x}=\dfrac{\sqrt{5}-1}{2}\)

hay \(x=\dfrac{6-2\sqrt{5}}{4}\)

15 tháng 7 2018

Bài 1 : ĐKXĐ : \(\left\{{}\begin{matrix}x>0\\x\ne1\end{matrix}\right.\)

Câu a :

\(B=\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)

\(=\left(\dfrac{\sqrt{x}.\sqrt{x}-1}{2\sqrt{x}}\right)^2\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\left(\dfrac{x-1}{2\sqrt{x}}\right)^2\left(\dfrac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{\left(x-1\right)^2}{\left(2\sqrt{x}\right)^2}\times\dfrac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(x-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{4x}\times\dfrac{-4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=-\dfrac{x-1}{\sqrt{x}}\)

Câu b :

Để \(B< 0\Leftrightarrow-\dfrac{x-1}{\sqrt{x}}< 0\Leftrightarrow\dfrac{x-1}{\sqrt{x}}>0\Leftrightarrow x-1>0\Leftrightarrow x>1\)

Vậy \(x>1\) thì \(B< 0\)

Câu c :

Để \(B=-2\Leftrightarrow-\dfrac{x-1}{\sqrt{x}}=-2\)

\(\Leftrightarrow\left(\dfrac{-\left(x-1\right)}{\sqrt{x}}\right)^2=\left(-2\right)^2\)

\(\Leftrightarrow\dfrac{x^2-2x+1}{x}=4\)

\(\Leftrightarrow\dfrac{x^2-2x+1}{x}=\dfrac{4x}{x}\)

\(\Leftrightarrow x^2-2x+1=4x\)

\(\Leftrightarrow x^2-6x+1=0\)

\(\Delta=\left(-6\right)^2-4=32>0\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{6+\sqrt{32}}{2}=3+2\sqrt{2}\\x_1=\dfrac{6-\sqrt{32}}{2}=3-2\sqrt{2}\end{matrix}\right.\)

Vậy \(x=3+2\sqrt{2}\) hoặ \(x=3-2\sqrt{2}\) thì \(B=-2\)