Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x,y>0\)
a/ \(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}+\frac{x+y}{\sqrt{xy}}\right)\)
\(=\left(\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right).\sqrt{x}}-\frac{y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}.\sqrt{y}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}-\frac{\left(x+y\right)\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right)\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{-\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{-\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{x+y}=\sqrt{y}-\sqrt{x}\)
b/ Ta có ; \(4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\)
\(\Rightarrow B=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{3}=\sqrt{3}+1-\sqrt{3}=1\)
\(=\dfrac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\left(\dfrac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}-\dfrac{y}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}-\dfrac{x+y}{\sqrt{xy}}\right)\)
\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}:\dfrac{x\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)-y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x^2-y^2\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}\)
\(=\dfrac{x+y}{\sqrt{x}+\sqrt{y}}\cdot\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{x^2-x\sqrt{xy}-y\sqrt{xy}-y^2-x^2+y^2}\)
\(=\dfrac{\sqrt{xy}\left(x+y\right)\cdot\left(\sqrt{x}-\sqrt{y}\right)}{-\sqrt{xy}\left(x+y\right)}=-\sqrt{x}+\sqrt{y}\)(1)
Khi x=3 và \(y=4+2\sqrt{3}\) vào (1), ta được:
\(=-\sqrt{3}+\sqrt{4+2\sqrt{3}}=-\sqrt{3}+\sqrt{3}+1=1\)
a/ \(P=\frac{1}{\sqrt{xy}}\)
b/ \(x^3=8-6x\)
\(\Rightarrow P=\frac{1}{\sqrt{x\left(x^2+6\right)}}=\frac{1}{\sqrt{x^3+6x}}=\frac{1}{\sqrt{8-6x+6x}}=\frac{1}{2\sqrt{2}}\)
\(A=\left(\sqrt{x}+\frac{y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\right):\left(\frac{x}{\sqrt{xy}+y}+\frac{y}{\sqrt{xy}-x}-\frac{x+y}{\sqrt{xy}}\right)\)
\(=\frac{x+\sqrt{xy}+y-\sqrt{xy}}{\sqrt{x}+\sqrt{y}}:\frac{x\left(\sqrt{xy}-x\right)\sqrt{xy}+y\left(\sqrt{xy}+y\right)\sqrt{xy}-\left(x+y\right)\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}{\sqrt{xy}\left(\sqrt{xy}+y\right)\left(\sqrt{xy}-x\right)}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}:\frac{x^2y-x^2\sqrt{xy}+xy^2+y^2\sqrt{xy}-y^2\sqrt{xy}+x^2\sqrt{xy}}{xy^2-x^2y}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy^2-x^2y}{xy^2+x^2y}\)
\(=\frac{x+y}{\sqrt{x}+\sqrt{y}}.\frac{xy\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)}{xy\left(x+y\right)}\)
\(=\sqrt{y}-\sqrt{x}\)
\(A=\frac{x}{\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)}+\frac{y}{\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)}-\frac{x+y}{\sqrt{xy}}\)
\(A=\frac{x\sqrt{x}\left(\sqrt{y}-\sqrt{x}\right)+y\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)-\left(x+y\right)\left(y-x\right)}{\sqrt{xy}\left(y-x\right)}\)
\(A=\frac{x\sqrt{xy}-x^2+y\sqrt{xy}+y^2-y^2+x^2}{\sqrt{xy}\left(y-x\right)}\)
\(A=\frac{\sqrt{xy}\left(x+y\right)}{\sqrt{xy}\left(y-x\right)}=\frac{y+x}{y-x}\)
KO CÓ GIÁ TRỊ y sao tính đây !!!!!!
CÒN \(x=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\) nhé