Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-1\right)\left(x-2\right)>0\)
=> \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>1\\x>2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)
=> \(1< x< 2\)
b) 2x - 3 < 0
=> 2x < 3
=> x < 3/2
c) \(\left(2x-4\right)\left(9-3x\right)>0\)
=> 2(x - 2). 3(3 - x) > 0
=> (x - 2)(3 - x) > 0
=> \(\hept{\begin{cases}x-2>0\\3-x>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\3-x< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>3\end{cases}}\)
=> 2 < x < 3
X:(\(\frac{2}{9}-\frac{1}{5}\))=\(\frac{8}{16}\)
x:\(\frac{1}{45}\) =\(\frac{8}{16}\)
x: =\(\frac{8}{16}.\frac{1}{45}\)
x: =\(\frac{1}{90}\)
a)\(1-2x< 1\)
\(\Leftrightarrow2x>0\)
\(\Leftrightarrow x>0\)
b)\(\left(x-2\right)^2\left(x+1\right)\left(x-4\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne2\\\left(x+1\right)\left(x-4\right)< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne2\\x+1< 0\\x-4>0\end{cases}}\)hoặc \(\hept{\begin{cases}x\ne2\\x+1>0\\x-4< 0\end{cases}}\)
mà \(x+1>x-4\forall x\)
nên \(\hept{\begin{cases}x\ne2\\x+1>0\\x-4< 0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ne2\\x>-1\\x< 4\end{cases}}\)
hay \(\hept{\begin{cases}x\ne2\\-1< x< 4\end{cases}}\)
c)\(x-2< 0\)
\(\Leftrightarrow x< 2\)
d)\(\frac{x^2\left(x-3\right)}{x-9}< 0\left(x\ne9\right)\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\\frac{x-3}{x-9}< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-3< 0\\x-9>0\end{cases}}\)hoặc \(\hept{\begin{cases}x\ne0\\x-3>0\\x-9< 0\end{cases}}\)
mà \(x-3>x-9\forall x\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-3>0\\x-9< 0\end{cases}}\)\(\Leftrightarrow3< x< 9\)
e)\(\frac{5}{x}< 1\left(x\ne0\right)\)
\(\Leftrightarrow x>5\)
f)\(8x>2x\)
\(\Leftrightarrow6x>0\)
\(\Leftrightarrow x>0\)
g)\(x+a< a\)
\(\Leftrightarrow x< 0\)
h)\(x^3< x^2\)
\(\Leftrightarrow x^2\left(x-1\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x-1< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne0\\x< 1\end{cases}}\)
a)
Vì \(x^2-2x+3=x^2-2x+1+2=\left(x-1\right)^2+2\ge2\forall x\)
\(\Rightarrow x-8< 0\)
\(x< 8\)
b)
Ta có :
\(3x^2+5\ge5\forall x\)
\(\Rightarrow7x+9>0\)
\(7x>-9\)
\(x>-\frac{9}{7}\)
a)\(\frac{x-8}{x^2-2x+3}< 0\)
Vì x2 - 2x + 3 = ( x2 - 2x + 1 ) + 2 = ( x - 1 )2 + 2 ≥ 2 > 0 ∀ x
nên ta chỉ cần xét x - 8 < 0
x - 8 < 0 => x < 8
Vậy với x < 8 thì \(\frac{x-8}{x^2-2x+3}< 0\)
b)\(\frac{7x+9}{3x^2+5}>0\)
Vì 3x2 + 5 ≥ 5 > 0 ∀ x
nên ta chỉ cần xét 7x + 9 > 0
7x + 9 > 0 => 7x > -9 => x > -9/7
Vậy với x > -9/7 thì \(\frac{7x+9}{3x^2+5}>0\)