Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
E mới 7 - 8 thui !!! nhưng e sẽ cố giúp
a) \(A=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}.\frac{1-x^2}{2}\)
\(=\frac{x\sqrt{x}-3\sqrt{x}-2-x\sqrt{x}+\sqrt{x}-2x+2}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{1-x^2}{2}\)
\(=\frac{-2\sqrt{x}-2x}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{1-x^2}{2}\)
\(=\frac{-2\sqrt{x}\left(\sqrt{x}+1\right)}{\left(x-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(1-x\right)\left(x+1\right)}{2}\)
\(=\frac{2\left(\sqrt{x}+1\right)\left(x-1\right)\left(x+1\right)\sqrt{x}}{2\left(\sqrt{x}+1\right)\left(x-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(x+1\right)}{\sqrt{x}+1}\)
b )
ĐKXĐ : \(x\ge0\)
Vì \(\sqrt{x}+1>0\forall x\) Để \(A=\frac{\sqrt{x}\left(x+1\right)}{\sqrt{x}+1}>0\) \(\Leftrightarrow\sqrt{x}\left(x+1\right)>0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x}\ne0\\x+1>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne0\\x>-1\end{cases}}}\) Mà theo đxxd thì \(x\ge0\) nên \(x>0\)
Vậy với \(x>0\) thì \(A>0\)
c ) Lớp 7 chưa bt làm :((
E ghi rõ nèk
\(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\)
\(=\frac{\left(\sqrt{x}-2\right)\left(x+2\sqrt{x}+1\right)-\left(x-1\right)\left(\sqrt{x}+2\right)}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}\)
\(=\frac{\left(x\sqrt{x}+2x+\sqrt{x}-2x-4\sqrt{x}-2\right)-\left(x\sqrt{x}+2x-\sqrt{x}-2\right)}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}\)
\(=\frac{x\sqrt{x}-3\sqrt{x}-2-x\sqrt{x}-2x+\sqrt{x}-2}{\left(x-1\right)\left(x+2\sqrt{x}+1\right)}\)
a) ĐKXĐ: \(x\ge0\); \(1-4x\ne\)0; \(2\sqrt{x}-1\ne0\); \(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\ne\)0
<=> \(x\ge0\); x \(\ne\)1/4
Ta có: \(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)
\(A=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x+2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{\left(1-2\sqrt{x}\right)\left(1+2\sqrt{x}\right)}\right)\)
\(A=\frac{\sqrt{x}-1}{1-4x}\cdot\frac{1-4x}{6x+4x+2\sqrt{x}}\)
\(A=\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\)
b)Với x \(\ge\)0 và x \(\ne\)1/4
Ta có: A > A2 <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}>\left(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\right)^2\)
<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\left(1-\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\right)>0\)
<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\frac{10x+2\sqrt{x}-\sqrt{x}+1}{10x+2\sqrt{x}}>0\)
<=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}\cdot\frac{10+\sqrt{x}+1}{10x+2\sqrt{x}}>0\)
<=> \(\sqrt{x}-1>0\) <=> \(x>1\)
c) Với x\(\ge\)0 và x \(\ne\)1/4 (1)
Ta có: \(\left|A\right|>\frac{1}{4}\) <=> \(\orbr{\begin{cases}A>\frac{1}{4}\\A< -\frac{1}{4}\end{cases}}\)
TH1: \(A>\frac{1}{4}\) <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}>\frac{1}{4}\)
<=> \(4\left(\sqrt{x}-1\right)>10x+2\sqrt{x}\)
<=> \(4\sqrt{x}-4>10x+2\sqrt{x}\)
<=> \(10x-2\sqrt{x}+4< 0\)(vô liia vì \(10x-2\sqrt{x}+4>0\))
TH2: \(A< -\frac{1}{4}\) <=> \(\frac{\sqrt{x}-1}{10x+2\sqrt{x}}< -\frac{1}{4}\)
<=> \(4\left(\sqrt{x}-1\right)< -10x-2\sqrt{x}\)
<=> \(4\sqrt{x}-4+10x+2\sqrt{x}< 0\)
<=> \(10x+6\sqrt{x}-4< 0\)
<=> \(5x+3\sqrt{x}-2< 0\)
<=> \(\left(5\sqrt{x}-2\right)\left(\sqrt{x}+1\right)< 0\)
<=> \(x< \frac{4}{25}\) (2)
Từ (1) và (2) => \(0\le x< \frac{4}{25}\)
\(a,B=\left(\frac{15-\sqrt{x}}{x-25}+\frac{2}{\sqrt{x}+5}\right):\frac{\sqrt{x}+1}{\sqrt{x}-5}\)
\(B=\left(\frac{15-\sqrt{x}+2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(B=\frac{5+\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\frac{\sqrt{x}-5}{\sqrt{x}+1}\)
\(B=\frac{1}{\sqrt{x}+1}\)
\(b,P=A.B=\frac{4\left(\sqrt{x}+1\right)}{25-x}.\frac{1}{\sqrt{x}+1}\)
\(P=\frac{4}{25-x}\)
bổ sung điều kiện cho câu b là x nguyên
\(TH1:x>25< =>P< 0\left(KTM\right)\)
\(TH2:x< 25< =>P>0\)mà x nguyên
\(\frac{4}{25-x}\le4\)
dấu "=" xảy ra khi \(x=24\)
\(< =>MAX:P=4\)
\(A=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\) ĐKXĐ : x > 0 , x khác 9
\(A=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)
\(A=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+3}{x-9}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(A=\frac{-3\sqrt{x}}{\sqrt{x}+3}.\frac{1}{\sqrt{x}+1}\)
\(A=\frac{-3\sqrt{x}}{x+4\sqrt{x}+4}\)
\(A=\frac{-3\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)
a) ĐKXĐ : x>hoặc = 0 ; x khác 9
Còn câu b,c,d để vài bữa mình làm tiếp cho bây giờ mình đi ngủ đã buồn ngủ quá !
----------------- -Học tốt-----------------
Bài 1 :
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne4\\x\ne9\end{cases}}\)
\(A=\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
\(\Leftrightarrow A=\frac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}:\frac{x-9-x+4+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow A=\frac{1}{\sqrt{x}+1}:\frac{1}{\sqrt{x}-2}\)
\(\Leftrightarrow A=\frac{\sqrt{x}-2}{\sqrt{x}+1}\)
b) Để \(A< -1\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{\sqrt{x}+1}< -1\)
\(\Leftrightarrow\sqrt{x}-2< -\sqrt{x}-1\)
\(\Leftrightarrow2\sqrt{x}< 1\)
\(\Leftrightarrow\sqrt{x}< \frac{1}{2}\)
\(\Leftrightarrow x< \frac{1}{4}\)
Vậy để \(A< -1\Leftrightarrow x< \frac{1}{4}\)