K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>0\)

=> \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}>1\)             (1)

Ta lại có \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

           < \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

           < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

           < \(1-\frac{1}{100}< 1\)

      => \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< 1+1\)

     => \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)\(< 2\)               (2)

Từ (1) và (2) => \(1< 1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 2\)

                  => \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)không là số tự nhiên

2 tháng 3 2020

Đặt \(T=3\cdot5\cdot7\cdot.....\cdot49\)

\(\Rightarrow A\cdot T=\frac{T}{2}+\frac{T}{3}+\frac{T}{4}+....+\frac{T}{50}\)

\(2^4\cdot B\cdot T=\frac{2^4T}{2}+\frac{2^4T}{3}+\frac{2^4T}{4}+....+\frac{2^4T}{50}\left(1\right)\)

Tất cả các số hạng của (1) đều là stn ngoại trừ \(\frac{2^4T}{5}\)

\(\Rightarrow VP\notinℕ\Rightarrow VT\notinℕ\)

Mà \(2^4\inℕ\Rightarrow T\inℕ\)

\(\Rightarrow A\notinℕ\left(đpcm\right)\)

3/10=3/9*10

3/11=3/10*11

3/12=3/11*12

3/13=3/12*13

3/14=3/13*14

suy ra 3/10+3/3/11+....+3/14 nhỏ hơn 3/9*10+....+3/13*14

suy ra 3/9*10 + 3/10*11+....+3/13*14

=1/9-1/10+....+1/13-1/14

=1/9-1/14

tự viết kết quả nhé