Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dngj tính chất dãy các tỉ số bằng nhau. ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x+3y-z}{2.2+3.3-4}=\frac{50}{9}\)\(\frac{50}{9}\)
\(\frac{x-1}{2}=\frac{50}{9}\Rightarrow x-1=\frac{50}{9}.2=\frac{100}{9}\)
\(x=\frac{100}{9}+1=\frac{109}{9}\)
\(\frac{y-2}{3}=\frac{50}{9}\Rightarrow y-2=\frac{50}{9}3=\frac{50}{3}\)
\(y=\frac{50}{3}+2=\frac{56}{3}\)
\(\frac{z-3}{4}=\frac{50}{9}\Rightarrow z-3=\frac{50}{9}.4=\frac{200}{9}\)
\(z=\frac{200}{9}+3=\frac{227}{9}\)
Chúc bạn học tốt
\(\)
cái đoạn có hai phân số \(\frac{50}{9}\)bạn bớt đi một cái nha cái đó mik ghi nhầm
bạn điền thêm vào như thế này:
...................
A= 1-1/2^99 <1
Hay A<1
Vậy.........
Có. Chúng ta lí luận:
Vì \(1-\frac{1}{2^{99}}>1\)
\(\Rightarrow A>1\)
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)
\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)
\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)
\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)
\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)
Mình sẽ trình bày rõ hơn ở (2) nha
Ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)
(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)
Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)
\(\Rightarrow A=\frac{1}{\frac{\left(2+1\right).2}{2}}+\frac{1}{\frac{\left(3+1\right).3}{2}}+\frac{1}{\frac{\left(4+1\right).4}{2}}+...+\frac{1}{\frac{\left(99+1\right).99}{2}}+\frac{1}{50}\)
\(=\frac{2}{\left(2+1\right).2}+\frac{2}{\left(3+1\right).3}+\frac{2}{\left(4+1\right).4}+...+\frac{2}{\left(99+1\right).99}+\frac{1}{50}\)
\(=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\left(\frac{1}{2}-\frac{1}{100}\right)+\frac{1}{50}\)
\(=2.\frac{49}{100}+\frac{1}{50}\)
\(=\frac{49}{50}+\frac{1}{50}=\frac{50}{50}=1\)
Vậy A=1.
Cái này có trong violympic vòng 10..bạn nhớ ôn cho kĩ nếu như bạn thi violympic!