Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A=1/5-1/8+1/8-1/11+...+1/2006-1/2009=1/5-1/2009=2004/10045
b,B=1/4x(4/6x10+4/10x14+...+4/402x406)
=1/4x(1/6-1/10+1/10-1/14+...+1/402-1/406)
=1/4x(1/6-1/406)
=1/4x100/609=25/609
c,C=2x(5/7x12+5/12x17+...+5/502x507)
=2x(1/7-1/12+1/12-1/17+...+1/502-1/507)
=2x(1/7-1/507)
=2x500/3549
=1000/3549
Xin lỗi vì ko viết được rõ ràng.Mong bạn thông cảm. Chúc bạn học tốt.
\(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{2006\times2009}\)
\(=\frac{1}{3}\left(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{2006\times2009}\right)\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2006}-\frac{1}{2009}\right)\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{2009}\right)\)
\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{2009}\right)\)
\(=\frac{1}{3}\left(\frac{2009}{10045}-\frac{5}{10045}\right)\)
\(=\frac{1}{3}.\frac{2004}{10045}=\frac{2004}{30135}\)
a)\(\dfrac{3}{10}\)-x=\(\dfrac{25}{30}\)-\(\dfrac{4}{30}\)
\(\dfrac{3}{10}-x=\dfrac{7}{10}\)
x = \(\dfrac{3}{10}-\dfrac{7}{10}\)
x=\(\dfrac{-4}{10}\)
b)\(\dfrac{-5}{8}+x=\dfrac{4}{9}-\dfrac{63}{9}\)
\(\dfrac{-5}{9}+x=\dfrac{-59}{9}\)
\(x=\dfrac{-59}{9}-\dfrac{-5}{9}\)
\(x=\dfrac{-64}{9}\)
c)=>2.18=(x-3).(x-3)
=>36=(x-3)\(^2\)
=>6\(^2\)=(x-3)\(^2\)
6= x-3
x=6+3=9
9: \(=1-\dfrac{1}{99}+1-\dfrac{1}{100}+\dfrac{100}{101}\cdot\dfrac{1-4+3}{12}=2-\dfrac{199}{9900}=\dfrac{19601}{9900}\)
10: \(=\left(\dfrac{78}{79}+\dfrac{79}{80}+\dfrac{80}{81}\right)\cdot\dfrac{6+5+9-20}{30}=0\)
a/ \(\dfrac{3}{11.12}+\dfrac{3}{12.13}+\dfrac{3}{13.14}+\dfrac{3}{14.15}\)
\(=3\left(\dfrac{1}{11.12}+\dfrac{1}{12.13}+\dfrac{1}{13.14}+\dfrac{1}{14.15}\right)\)
\(=3\left(\dfrac{1}{11}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{15}\right)\)
\(=3\left(\dfrac{1}{11}-\dfrac{1}{15}\right)\)
\(=\dfrac{4}{55}\)
b/ \(\dfrac{2}{2.3}+\dfrac{2}{3.4}+\dfrac{2}{4.5}+\dfrac{2}{5.6}\)
\(=2\left(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\right)\)
\(=2\left(\dfrac{1}{2}-\dfrac{1}{6}\right)\)
\(=\dfrac{2}{3}\)
c/ \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+.....+\dfrac{3}{97.100}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+....+\dfrac{1}{97}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
d/ \(\dfrac{3}{2.5}+\dfrac{3}{5.8}+.....+\dfrac{3}{100.103}\)
\(=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+....+\dfrac{1}{100}-\dfrac{1}{103}\)
\(=\dfrac{1}{2}-\dfrac{1}{103}\)
\(=\dfrac{101}{206}\)
e/ Đặt :
\(A=\dfrac{1}{1.5}+\dfrac{1}{5.10}+....+\dfrac{1}{95.100}\)
\(\Leftrightarrow5A=\dfrac{5}{1.5}+\dfrac{5}{5.10}+....+\dfrac{5}{95.100}\)
\(=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{10}+....+\dfrac{1}{95}-\dfrac{1}{100}\)
\(=1-\dfrac{1}{100}\)
\(=\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{100}:5=\dfrac{99}{500}\)
Dấu . là dấu nhân nhé <3
Bài 1:
a) \(\dfrac{2}{5}\cdot x-\dfrac{1}{4}=\dfrac{1}{10}\)
\(\dfrac{2}{5}\cdot x=\dfrac{1}{10}+\dfrac{1}{4}\)
\(\dfrac{2}{5}\cdot x=\dfrac{7}{20}\)
\(x=\dfrac{7}{20}:\dfrac{2}{5}\)
\(x=\dfrac{7}{8}\)
Vậy \(x=\dfrac{7}{8}\).
b) \(\dfrac{3}{5}=\dfrac{24}{x}\)
\(x=\dfrac{5\cdot24}{3}\)
\(x=40\)
Vậy \(x=40\).
c) \(\left(2x-3\right)^2=16\)
\(\left(2x-3\right)^2=4^2\)
\(\circledast\)TH1: \(2x-3=4\\ 2x=4+3\\ 2x=7\\ x=\dfrac{7}{2}\)
\(\circledast\)TH2: \(2x-3=-4\\ 2x=-4+3\\ 2x=-1\\ x=\dfrac{-1}{2}\)
Vậy \(x\in\left\{\dfrac{7}{2};\dfrac{-1}{2}\right\}\).
Bài 2:
a) \(25\%-4\dfrac{2}{5}+0.3:\dfrac{6}{5}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}:\dfrac{6}{5}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{3}{10}\cdot\dfrac{5}{6}\)
\(=\dfrac{1}{4}-\dfrac{22}{5}+\dfrac{1}{4}\)
\(=\dfrac{5}{20}-\dfrac{88}{20}+\dfrac{5}{20}\)
\(=\dfrac{5-88+5}{20}\)
\(=\dfrac{78}{20}=\dfrac{39}{10}\)
b) \(\left(\dfrac{1}{6}-\dfrac{1}{5^2}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{1}{6}-\dfrac{1}{25}\cdot5+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{1}{6}-\dfrac{1}{5}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{5}{30}-\dfrac{6}{30}+\dfrac{1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=\left(\dfrac{5-6+1}{30}\right)\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=0\cdot\left(\dfrac{2011}{2010}+\dfrac{2010}{1009}+\dfrac{2009}{2008}\right)\)
\(=0\)
Bài 3:
a) \(\dfrac{4}{19}\cdot\dfrac{-3}{7}+\dfrac{-3}{7}\cdot\dfrac{15}{19}\)
\(=\dfrac{-3}{7}\left(\dfrac{4}{19}+\dfrac{15}{19}\right)\)
\(=\dfrac{-3}{7}\cdot1\)
\(=\dfrac{-3}{7}\)
b) \(7\dfrac{5}{9}-\left(2\dfrac{3}{4}+3\dfrac{5}{9}\right)\)
\(=\dfrac{68}{9}-\dfrac{11}{4}-\dfrac{32}{9}\)
\(=\dfrac{68}{9}-\dfrac{32}{9}-\dfrac{11}{4}\)
\(=4-\dfrac{11}{4}\)
\(=\dfrac{16}{4}-\dfrac{11}{4}\)
\(\dfrac{5}{4}\)
Bài 4:
\(\dfrac{4}{12\cdot14}+\dfrac{4}{14\cdot16}+\dfrac{4}{16\cdot18}+...+\dfrac{4}{58\cdot60}\)
\(=2\left(\dfrac{1}{12\cdot14}+\dfrac{1}{14\cdot16}+\dfrac{1}{16\cdot18}+...+\dfrac{1}{58\cdot60}\right)\)
\(=2\left(\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{18}+...+\dfrac{1}{58}-\dfrac{1}{60}\right)\)
\(=2\left(\dfrac{1}{12}-\dfrac{1}{60}\right)\)
\(=2\left(\dfrac{5}{60}-\dfrac{1}{60}\right)\)
\(=2\cdot\dfrac{1}{15}\)
\(=\dfrac{2}{15}\)
a) ta co:
1/18<x/12<y/9<1/4
=>2/36<x.3/36<y.4/36<9/36
=>x.3thuộc{3;6};y.4thuộc{4;8}
=>x thuộc{1;2};y thuộc{1:2}
b) ta co
7/8<x/40<9/10
=>70/80<x.2/40<72/80
=>x.2 =71
=>x=71/2
A= \(\dfrac{1}{1.2}\)+ \(\dfrac{1}{2.3}\)+ \(\dfrac{1}{3.4}\)+ \(\dfrac{1}{4.5}\)+ \(\dfrac{1}{5.6}\)
= 1-\(\dfrac{1}{2}\)+ \(\dfrac{1}{2}\)- \(\dfrac{1}{3}\)+ \(\dfrac{1}{3}\)- \(\dfrac{1}{4}\)+ \(\dfrac{1}{4}\)- \(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)- \(\dfrac{1}{6}\)
= 1 - \(\dfrac{1}{6}\)= \(\dfrac{5}{6}\)
mk chỉ bt làm câu 1 thôi ak
mong bn thông cảm
tìm x a)
\(\dfrac{7}{2}\)-\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{4}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{4}\) + \(\dfrac{7}{2}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-5}{12}+\dfrac{7}{12}\)
\(\left(x+\dfrac{7}{10}\right)\): \(\dfrac{6}{5}\) = \(\dfrac{-12}{12}=1\)
\(x+\dfrac{7}{10}\)= 1 . \(\dfrac{6}{5}\)
*Rồi tự làm phần tt đi
a)
\(A=\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2006.2009}\)
\(=\frac{8-5}{5.8}+\frac{11-8}{8.11}+\frac{14-11}{11.14}+....+\frac{2009-2006}{2006.2009}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{2006}-\frac{1}{2009}\)
\(=\frac{1}{5}-\frac{1}{2009}=\frac{2004}{10045}\)
b)
\(B=\frac{1}{6.10}+\frac{1}{10.14}+...+\frac{1}{402.406}\)
\(\Rightarrow 4B=\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{402.406}\)
\(4B=\frac{10-6}{6.10}+\frac{14-10}{10.14}+...+\frac{406-402}{402.406}\)
\(4B=\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{402}-\frac{1}{406}\)
\(4B=\frac{1}{6}-\frac{1}{406}=\frac{100}{609}\Rightarrow B=\frac{25}{609}\)