\(B=\frac{4^{10}+8^4}{4^5+8^6}\)

b,\(C=\frac{1+3^4+3^8+3^{12...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2017

\(A=\dfrac{4^{10}+8^4}{4^5+8^6}\)

\(A=\dfrac{2^{20}+2^{12}}{2^{10}+2^{18}}=\dfrac{\left(2^8+1\right).2^{12}}{\left(1+2^8\right).2^{10}}\)

\(=\dfrac{\left(256+1\right).2^2}{1+256}=\dfrac{257.2^2}{257}=2^2\)

\(B=\dfrac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}+3^{14}}\)

\(=\dfrac{1+81+6561+3^{12}}{1+9+81+729+6561+59049+3^{12}+3^{14}}\)

\(=\dfrac{6643+3^{12}}{91+719+6561+59049+3^{12}+3^{14}}\)

\(=\dfrac{6643+3^{12}}{66430+3^{12}+3^{14}}\)

P/s : Nổi hứng lên thì lm chứ k bt đúng hay sai :V

6 tháng 10 2017

B sai bae nhs

26 tháng 6 2018

\(\frac{4^{10}+8^4}{4^5+8^6}=\frac{\left(2^2\right)^{10}+\left(2^3\right)^4}{\left(2^2\right)^5+\left(2^3\right)^6}=\frac{2^{2.10}+2^{3.4}}{2^{2.5}+2^{3.6}}=\)

\(=\frac{2^{20}+2^{12}}{2^{10}+2^{18}}\)

26 tháng 6 2018

\(\frac{4^{10}+8^4}{4^5+8^6}=\frac{2^{20}+2^{12}}{2^{10}+2^{18}}=\frac{2^{12}.2^8+2^{12}}{2^{10}+2^{10}.2^8}=\frac{2^{12}\left(1+2^8\right)}{2^{10}\left(1+2^8\right)}=\frac{2^{12}}{2^{10}}=2^2=4\)

...
Đọc tiếp

\(\left(\frac{-5}{12}+\frac{7}{4}-\frac{3}{8}\right)-\left[4\frac{1}{2}-7\frac{1}{3}\right]-\left(\frac{1}{4}-\frac{5}{2}\right)\)

\(\left[2\frac{1}{4}-5\frac{3}{2}\right]-\left(\frac{3}{10}-1\right)-5\frac{1}{2}+\left(\frac{1}{3}-\frac{5}{6}\right)\)

\(\frac{4}{7}-\left(3\frac{2}{5}-1\frac{1}{2}\right)-\frac{5}{21}+\left[3\frac{1}{2}-4\frac{2}{3}\right]\)

\(\frac{1}{8}-1\frac{3}{4}+\left(\frac{7}{8}-3\frac{7}{2}+\frac{3}{4}\right)-\left[\frac{7}{4}-\frac{5}{8}\right]\)

\(\left(\frac{3}{5}-2\frac{1}{10}+\frac{11}{20}\right)-\left[\frac{-3}{4}+1\frac{7}{2}\right]\)

\(\left[-2\frac{1}{5}-2\frac{2}{3}\right]-\left(\frac{1}{15}-5\frac{1}{2}\right)+\left[\frac{-1}{6}+\frac{1}{3}\right]\)

\(1\frac{1}{8}-\left(\frac{1}{15}-\frac{1}{2}+\frac{-1}{6}\right)+\left[\frac{5}{4}+\frac{3}{2}\right]\)

\(\frac{5}{6}-\left(1\frac{1}{3}-1\frac{1}{2}\right)+\left[\frac{5}{12}-\frac{3}{4}-\frac{1}{6}\right]\)

\(1\frac{1}{4}-\left(\frac{7}{12}-\frac{2}{3}-1\frac{3}{8}\right)+\left[\frac{5}{24}-2\frac{1}{2}\right]-\frac{1}{6}-\left[\frac{-3}{4}\right]\)

\(-2\frac{1}{5}+2\frac{3}{10}-\left(\frac{6}{20}-\left[\frac{2}{8}-1\frac{1}{2}\right]\right)+\left[\frac{7}{20}-1\frac{1}{4}\right]\)

\(-\left[1\frac{2}{3}-3\frac{1}{2}+\frac{1}{4}\right]+\left(\frac{2}{6}-\frac{5}{12}\right)-\left(\frac{1}{3}-\left[\frac{1}{4}-\frac{1}{3}\right]\right)\)

\(-\frac{4}{5}-\left(1\frac{1}{10}-\frac{7}{10}\right)+\left[\frac{3}{4}-1\frac{1}{5}\right]+1\frac{1}{2}\)

\(\frac{3}{21}-\frac{5}{14}+\left[1\frac{1}{3}-5\frac{1}{2}+\frac{5}{14}\right]-\left(\frac{1}{6}-\frac{3}{7}+\frac{1}{3}\right)\)

\(-1\frac{2}{5}+\left[1\frac{3}{10}-\frac{7}{20}-1\frac{1}{4}\right]-\left(\frac{1}{5}-\left[\frac{3}{4}-1\frac{1}{2}\right]\right)\)

\(2\frac{1}{3}-\left(\frac{1}{2}-2\frac{1}{6}+\frac{3}{4}\right)+\left[\frac{5}{12}-1\frac{1}{3}\right]-\frac{7}{8}+3\frac{1}{2}\)

\(2\frac{1}{4}-1\frac{3}{5}-\left(\frac{9}{20}-\frac{7}{10}\right)+\left[1\frac{3}{5}-2\frac{1}{2}\right]+\frac{3}{4}\)

\(\left[\frac{8}{3}-5\frac{1}{4}+\frac{1}{6}\right]-\frac{7}{4}+\frac{-5}{12}-\left(1-1\frac{1}{2}+\frac{1}{3}\right)\)

\(\left(\frac{1}{4}-\left[1\frac{1}{4}-\frac{7}{10}\right]+\frac{1}{2}\right)-2\frac{1}{5}-1\frac{3}{10}+\left[1-\frac{1}{2}\right]\)

TRÌNH BÀY GIÚP MÌNH NHA 

0
26 tháng 6 2018

\(B=\frac{1+3^4+3^8+3^{12}}{1+3^2+3^4+3^6+3^8+3^{10}+3^{12}+3^{14}}\)

\(B=\frac{1+3^4+3^8+3^{12}}{\left(1+3^4+3^8+3^{12}\right)+3^2+3^6+3^{10}+3^{14}}\)

Xét mẫu : \(\left(1+3^4+3^8+3^{12}\right)+3^2\left(1+3^4+3^8+3^{12}\right)=\left(3^2+1\right)\left(1+3^4+3^8+3^{12}\right)\)

Ta có : \(\frac{1+3^4+3^8+3^{12}}{\left(3^2+1\right)\left(1+3^4+3^8+3^{12}\right)}=\frac{1}{3^2+1}=\frac{1}{10}\)

26 tháng 6 2018

(chủ câu hỏi)

sao lại có \(3^2+1\)ở kia

28 tháng 12 2017

Bài 5: GTNN chứ nhỉ?

Với mọi gt của \(x;y\in R\) ta có:

\(x^2+3\left|y-2\right|+1\ge1\)

Hay \(A\ge1\) với mọi gt của \(x;y\in R\)

Dấu "=" sảy ra khi và chỉ khi \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy..................

Bài 6: GTLN chứ?

Với mọi giá trị của \(x\in R\) ta có:

\(-\left(2x-1\right)^2\le0\Rightarrow-5-\left(2x-1\right)^2\le-5\)

Hay \(B\le5\) với mọi giá trị của \(x\in R\)

Dấu "=" sảy ra khi và chỉ khi \(x=\dfrac{1}{2}\)

Vậy...................

28 tháng 12 2017

Bài 4 :

\(a,3^{15}-9^6=3^{15}-\left(3^2\right)^6=3^{15}-3^{12}=3^{12}\left(3^3-1\right)=3^{12}.26=3^{12}.2.13⋮\left(đpcm\right)\)

\(b,8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{18}\left(2^3-1\right)=2^{18}.7=2^{17}.2.7=2^{17}.14⋮14\left(đpcm\right)\)

Bài 5 :

\(A=1^2+3^2+6^2+9^2+.............+39^2\)

\(=1+3^2+\left(6^2+9^2+.........+39^2\right)\)

\(=10+3^2\left(2^2+3^2+.........+13^2\right)\)

\(=10+3^2.818\)

\(=10+9.818\)

\(=7372\)

15 tháng 1 2020

Ta có

•   A=1+34+38+312

=>34.A=34+38+312+316

<=>81.A-A=316-1

<=>A=(316-1)/80=538084

•B=1+32+34+36+38+310+312+314

=>32.B=32+34+36+38+310+312+314+316

<=>8.B=316-1

<=>B=(316-1)/8=53808400

Vậy Q=A/B=538084/53808400=1/100=0.01

15 tháng 1 2020

Sửa lại:

B=5380840

=>Q=1/10