K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

\(\text{a) }3x+\dfrac{4}{9}=2x+\dfrac{11}{18}\\ \Leftrightarrow3x-2x=\dfrac{11}{18}-\dfrac{4}{9}\\ \Leftrightarrow x=\dfrac{1}{6}\\ \text{Vậy }x=\dfrac{1}{6}\\ \)

\(\text{b) }\dfrac{7}{12}+\dfrac{2}{3}:x=\dfrac{5}{8}\\ \Leftrightarrow\dfrac{2}{3}:x=\dfrac{1}{24}\\ \Leftrightarrow x=16\\ \text{Vậy }x=16\\ \)

\(\text{c) }\left|2.5-x\right|-\dfrac{1}{5}=1.2\\ \Leftrightarrow\left|2.5-x\right|=1.4\\ \Leftrightarrow\left[{}\begin{matrix}2.5-x=-1.4\\2.5-x=1.4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3.9\\x=1.1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{39}{10}\\x=\dfrac{11}{10}\end{matrix}\right.\\ \text{Vậy }x=\dfrac{39}{10}\text{ hoặc }x=\dfrac{11}{10}\\ \)

\(\text{d) }2^{x+1}+2^{x+2}=192\\ \Leftrightarrow2^x\cdot2+2^x\cdot4=192\\ \Leftrightarrow2^x\left(2+4\right)=192\\ \Leftrightarrow2^x\cdot6=192\\ \Leftrightarrow2^x=32\\ \Leftrightarrow2^x=2^5\\ \Leftrightarrow x=5\\ \text{Vậy }x=5\\ \)

3 tháng 12 2018

mng giúp e với ạ !

3 tháng 12 2018

b)\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\\sqrt{x^2-3x+8}=x-4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-3x+8=\left(x-4\right)^2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x^2-3x+8=x^2-8x+16\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\5x=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge4\\x=\dfrac{8}{5}\left(loại\right)\end{matrix}\right.\)=> pt vô nghiệm

c)\(\left\{{}\begin{matrix}8-x\ge0\\x^2-5x-2=\left(8-x\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x^2-5x-2=x^2-16x+64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\11x=66\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le8\\x=6\left(nhận\right)\end{matrix}\right.\)

22 tháng 12 2018

vui giúp mình với nha mọi người

28 tháng 12 2018

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:

\(-3=4a+b\)

Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:

\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)

Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)

b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:

\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)

Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé

Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R

\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)

Chọn các điểm:

x 1 3 -1 2 -2

y 4 0 0 3 -5

7 tháng 11 2017

a) \(\dfrac{5+x}{4-x}=\dfrac{1}{2}\)

\(\Leftrightarrow2\left(5+x\right)=4-x\)

\(\Leftrightarrow2\left(5+x\right)-\left(4-x\right)=0\)

\(\Leftrightarrow10+2x-4+x=0\)

\(\Leftrightarrow6+3x=0\)

\(\Leftrightarrow3x=-6\)

\(\Leftrightarrow x=-2\)

Vậy x=-2

b) \(\dfrac{25}{14}=\dfrac{x+7}{x-4}\)

\(\Leftrightarrow25\left(x-4\right)=14\left(x+7\right)\)

\(\Leftrightarrow25\left(x-4\right)-14\left(x+7\right)=0\)

\(\Leftrightarrow25x-100-14x-98=0\)

\(\Leftrightarrow11x-198=0\)

\(\Leftrightarrow11x=198\)

\(\Leftrightarrow x=18\)

Vậy x=18

c) \(\dfrac{3x-5}{x+4}=\dfrac{5}{2}\)

\(\Leftrightarrow2\left(3x-5\right)=5\left(x+4\right)\)

\(\Leftrightarrow2\left(3x-5\right)-5\left(x+4\right)=0\)

\(\Leftrightarrow6x-10-5x-20=0\)

\(\Leftrightarrow x-30=0\)

\(\Leftrightarrow x=30\)

Vậy x=30

d) \(\dfrac{3x-1}{2x+1}=\dfrac{3}{7}\)

\(\Leftrightarrow7\left(3x-1\right)=3\left(2x+1\right)\)

\(\Leftrightarrow7\left(3x-1\right)-3\left(2x+1\right)=0\)

\(\Leftrightarrow21x-7-6x-3=0\)

\(\Leftrightarrow15x-10=0\)

\(\Leftrightarrow15x=10\)

\(\Leftrightarrow x=\dfrac{10}{15}=\dfrac{2}{3}\)

Vậy \(x=\dfrac{2}{3}\)

9 tháng 12 2018

5. \(y=\dfrac{-3x}{x+2}\)

xác định khi: \(x+2\ne0\Leftrightarrow x\ne-2\)

vậy D= (\(-\infty;+\infty\))\{-2}

6. \(y=\sqrt{-2x-3}\)

xác định khi: \(-2x-3\ge0\Leftrightarrow x\le\dfrac{-3}{2}\)

vậy D= (\(-\infty;\dfrac{-3}{2}\)]

7. \(y=\dfrac{3-x}{\sqrt{x-4}}\)

xác định khi: x-4 >0 <=> x>4

vậy D= (\(4;+\infty\))

8. \(y=\dfrac{2x-5}{\left(3-x\right)\sqrt{5-x}}\)

xác định khi: \(\left\{{}\begin{matrix}3-x\ne0\\5-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x< 5\end{matrix}\right.\)

vậy D= (\(-\infty;5\))\ {3}

9.\(y=\sqrt{2x+1}+\sqrt{4-3x}\)

xác định khi: \(\left\{{}\begin{matrix}2x+1\ge0\\4-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{-1}{2}\\x\le\dfrac{4}{3}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{-1}{2}\le x\le\dfrac{4}{3}\)

vậy D= [\(\dfrac{-1}{2};\dfrac{4}{3}\)]

9 tháng 12 2018

1. \(y=\dfrac{3x-2}{x^2-4x+3}\)

xác định khi : \(x^2-4x+3\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)

vậy tập xác định là: D = \(\left(-\infty;+\infty\right)\backslash\left\{3;1\right\}\)

2.\(y=2\sqrt{5-4x}\)

xác định khi \(5-4x\ge0\Leftrightarrow x\le\dfrac{5}{4}\)

vậy D= (\(-\infty;\dfrac{5}{4}\)]

3. \(y=\dfrac{2}{\sqrt{x+3}}+\sqrt{5-2x}\)

xác định khi: \(\left\{{}\begin{matrix}x+3>0\\5-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x\le\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow-3< x\le\dfrac{5}{2}\)

vậy D= (\(-3;\dfrac{5}{2}\)]

4.\(\sqrt{9-x}+\dfrac{1}{\sqrt{x+2}-2}\)

xác định khi: \(\left\{{}\begin{matrix}9-x\ge0\\x+2\ge0\\x\ne2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x\ge-2\\x\ne2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2\le x\le9\\x\ne2\end{matrix}\right.\)

Vậy D= [\(-2;9\)]\{2}

2 tháng 4 2017

a) ĐKXĐ:

2x + 3 ≠ 0 ⇔ x ≠ - .

Quy đồng mẫu thức rồi khử mẫu thức chung thì được

4(x2 + 3x + 2) = (2x – 5)(2x + 3) \(\Leftrightarrow\)12x + 8 = - 4x - 15

 \(\Leftrightarrow\)x = - (nhận).

b) ĐKXĐ: x ≠ ± 3. Quy đồng mẫu thức rồi khử mẫu thì được

(2x + 3)(x + 3) - 4(x - 3) = 24 + 2(x2 -9)

=> 5x = -15 => x = -3 (loại). Phương trình vô nghiệm.

c) Bình phương hai vế thì được: 3x - 5 = 9 => x = (nhận).

d) Bình phương hai vế thì được: 2x + 5 = 4 => x = - .

 

a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)

=>(2x-1)(x-2)(x+1)<>0

hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)

b: ĐKXĐ: x+5<>0

=>x<>-5

c: ĐKXĐ: x4-1<>0

hay \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x^4+2x^2-3< >0\)

=>\(x\notin\left\{1;-1\right\}\)

2 tháng 4 2017

\(a,\Leftrightarrow\dfrac{\left(3x+4\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}=\dfrac{4+3x^2-12}{\left(x-2\right)\left(x+2\right)}\)

ĐKXĐ:\(x\ne2;x\ne-2\)

\(\Rightarrow3x^2+10x+8-x+2-4-3x^2+12=0\)

\(\Leftrightarrow\)\(9x+18=0\)

\(\Leftrightarrow x=-2\)(loại).
Vậy phương trình vô nghiệm.

b,ĐKXĐ:\(x\ne\dfrac{1}{2}\)

PT đã cho \(\Rightarrow6x^2-4x+6-6x^2+13x-5=0\)

\(\Leftrightarrow9x+1=0\)

\(\Leftrightarrow x=-\dfrac{1}{9}\left(tmđk\right)\)

c,\(ĐKXĐ:x\ge2\)

Bình phương 2 vế ta được:

\(x^2-4-x^2+2x-1=0\)

\(\Leftrightarrow2x-5=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\left(tmđk\right)\)

5 tháng 6 2017

a)
Đkxđ: \(\left\{{}\begin{matrix}-3x+2\ge0\\x+1\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{-2}{3}\\x\ne-1\end{matrix}\right.\)
b)
Đkxđ: \(\left\{{}\begin{matrix}x-2\ge0\\-x-4\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\)\(\Leftrightarrow2\le x\le4\).
c)
Đkxđ: \(\left\{{}\begin{matrix}3x^2+6x+11>0\\2x+1\ge0\end{matrix}\right.\)\(\Leftrightarrow2x+1\ge0\)\(\Leftrightarrow x\ge-\dfrac{1}{2}\).
d)
Đkxđ: \(\left\{{}\begin{matrix}x+4\ge0\\x^2-9\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-4\\x\ne3\\x\ne-3\end{matrix}\right.\).

7 tháng 4 2017

lời giải

a) \(\left\{{}\begin{matrix}-2x+\dfrac{3}{5}>\dfrac{2x-7}{3}\left(1\right)\\x-\dfrac{1}{2}< \dfrac{5\left(3x-1\right)}{2}\left(2\right)\end{matrix}\right.\)

(1)\(\Leftrightarrow\)

\(\dfrac{3}{5}+\dfrac{7}{3}>\left(\dfrac{2}{3}+2\right)x\)

\(\dfrac{44}{15}>\dfrac{8}{3}x\) \(\Rightarrow x< \dfrac{44.3}{15.8}=\dfrac{11}{5.2}=\dfrac{11}{10}\)

Nghiêm BPT(1) là \(x< \dfrac{11}{10}\)

(2) \(\Leftrightarrow2x-1< 15x-5\Rightarrow13x>4\Rightarrow x>\dfrac{4}{13}\)

Ta có: \(\dfrac{4}{13}< \dfrac{11}{10}\) => Nghiệm hệ (a) là \(\dfrac{4}{13}< x< \dfrac{11}{10}\)