K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Phương trình đường tròn: \(x^2+y^2=5\)
Phương trình tọa độ giao điểm: \(\left\{{}\begin{matrix}x^2=y-1\Rightarrow y\ge1\\x^2+y^2-5=0\end{matrix}\right.\)
\(\Rightarrow y^2+y-6=0\Rightarrow\left\{{}\begin{matrix}y=2\Rightarrow x=\pm1\\y=-3< 1\left(l\right)\end{matrix}\right.\)
Gọi \(S_1\) là phần diện tích phía trên, \(S_2\) là phần diện tích phía dưới và S là diện tích hình tròn
\(S=\pi R^2=5\pi\)
\(S_1=\int\limits^1_{-1}\left(\sqrt{5-x^2}-\left(x^2+1\right)\right)dx=\int\limits^1_{-1}\sqrt{5-x^2}dx-\dfrac{8}{3}=I-\dfrac{8}{3}\)
Đặt \(x=\sqrt{5}sint\Rightarrow dx=\sqrt{5}cost.dt\) ; \(\left\{{}\begin{matrix}x=-1\Rightarrow t=arcsin\dfrac{-1}{\sqrt{5}}\\x=1\Rightarrow t=arcsin\dfrac{1}{\sqrt{5}}\end{matrix}\right.\)
\(I=\int\limits^{arcsin\dfrac{1}{\sqrt{5}}}_{arcsin\dfrac{-1}{\sqrt{5}}}5.cos^2t.dt=\dfrac{5}{2}\int\limits^{arcsin\dfrac{1}{\sqrt{5}}}_{arcsin\dfrac{-1}{\sqrt{5}}}\left(1+cos2t\right)dt=2+5arcsin\dfrac{1}{\sqrt{5}}\)
\(\Rightarrow S_1=I-\dfrac{8}{3}=-\dfrac{2}{3}+5arcsin\dfrac{1}{\sqrt{5}}\)
\(\Rightarrow S_2=S-S_1=5\pi+\dfrac{2}{3}-5arcsin\dfrac{1}{\sqrt{5}}\)
\(\Rightarrow\dfrac{S_2}{S_1}=\dfrac{5\pi+\dfrac{2}{3}-5arcsin\dfrac{1}{\sqrt{5}}}{-\dfrac{2}{3}+5arcsin\dfrac{1}{\sqrt{5}}}\approx8.51\)