K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

M = 1/(x+1).(x+2) + 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/x+5

    = 1/x+1 - 1/x+2 + 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 = 1/x+1

k mk nha

18 tháng 4 2021

a, ĐK : \(x\ne1;2;3;4;5\)

b, \(\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{1}{x}-\dfrac{1}{x-1}+\dfrac{1}{x-1}-\dfrac{1}{x-2}+\dfrac{1}{x-2}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-4}+\dfrac{1}{x-4}-\dfrac{1}{x-5}\)

\(=\dfrac{1}{x}-\dfrac{1}{x-5}=\dfrac{x-5-x}{x\left(x-5\right)}=\dfrac{-5}{x\left(x-5\right)}\)

a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)

b: \(P=\dfrac{1}{\left(x-1\right)\cdot x}+\dfrac{1}{\left(x-2\right)\left(x-1\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{1}{x-1}-\dfrac{1}{x}+\dfrac{1}{x-2}-\dfrac{1}{x-1}+\dfrac{1}{x-3}-\dfrac{1}{x-2}+\dfrac{1}{x-4}-\dfrac{1}{x-3}+\dfrac{1}{x-5}-\dfrac{1}{x-4}\)

\(=\dfrac{1}{x-5}-\dfrac{1}{x}=\dfrac{x-x+5}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)

17 tháng 11 2023

a: ĐKXĐ: \(x\notin\left\{0;1;2;3;4;5\right\}\)

b: \(P=\dfrac{1}{x^2-x}+\dfrac{1}{x^2-3x+2}+\dfrac{1}{x^2-5x+6}+\dfrac{1}{x^2-7x+12}+\dfrac{1}{x^2-9x+20}\)

\(=\dfrac{1}{x\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-2\right)\left(x-3\right)}+\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-4\right)\left(x-5\right)}\)

\(=\dfrac{-1}{x}+\dfrac{1}{x-1}-\dfrac{1}{x-1}+\dfrac{1}{x-2}-\dfrac{1}{x-2}+\dfrac{1}{x-3}-\dfrac{1}{x-3}+\dfrac{1}{x-4}-\dfrac{1}{x-4}+\dfrac{1}{x-5}\)

\(=\dfrac{1}{x-5}-\dfrac{1}{x}\)

\(=\dfrac{x-\left(x-5\right)}{x\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)

c: \(x^3-x^2+2=0\)

=>\(x^3+x^2-2x^2+2=0\)

=>\(x^2\cdot\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\)

=>\(\left(x+1\right)\left(x^2-2x+2\right)=0\)

=>x+1=0

=>x=-1

Khi x=-1 thì \(P=\dfrac{5}{\left(-1\right)\left(-1-5\right)}=\dfrac{5}{\left(-1\right)\cdot\left(-6\right)}=\dfrac{5}{6}\)

a: \(M=\dfrac{2x^2-10x-x^2+x+30-x-5}{\left(x-5\right)\left(x+5\right)}=\dfrac{x^2-10x+25}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{x+5}\)

b: Để M là số nguyên thì \(x+5\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{-4;-6;-3;-7;0;-10;-15\right\}\)

2 tháng 10 2018

Bài 1:

a.\(\left(x+y\right)^2-\left(x-y\right)^2=\left(x+y-x+y\right)\left(x+y+x-y\right)=2\left(x+y\right)\)

b.\(2\left(x+y\right)\left(x-y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=4x^2\)

15 tháng 8 2020

Bài 1 :

a) \(ĐKXĐ:x\ne1\)

\(A=\left(\frac{3}{x^2-1}+\frac{1}{x+1}\right):\frac{1}{x+1}\)

\(\Leftrightarrow A=\frac{3+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\left(x+1\right)\)

\(\Leftrightarrow A=\frac{x+2}{x-1}\)

b) Thay x = \(\frac{2}{5}\)vào A ta được :

\(A=\frac{\frac{2}{5}+2}{\frac{2}{5}-1}=\frac{\frac{12}{5}}{-\frac{3}{5}}=-4\)

c) Để \(A=\frac{5}{4}\)

\(\Leftrightarrow\frac{x+2}{x-1}=\frac{5}{4}\)

\(\Leftrightarrow4x+8=5x-5\)

\(\Leftrightarrow x=13\)

d) Để \(A>\frac{1}{2}\)

\(\Leftrightarrow\frac{x+2}{x-1}>\frac{1}{2}\)

\(\Leftrightarrow\frac{x+2}{x-1}-\frac{1}{2}>0\)

\(\Leftrightarrow2x+4-x+1>0\)

\(\Leftrightarrow x+5>0\)

\(\Leftrightarrow x>-5\)

Bài 2 :

a) \(ĐKXĐ:\hept{\begin{cases}x\ne-1\\x\ne0\end{cases}}\)

\(A=\frac{x^2}{x^2+x}-\frac{1-x}{x+1}\)

\(A=\frac{x}{x+1}+\frac{x-1}{x+1}\)

\(\Leftrightarrow A=\frac{2x-1}{x+1}\)

b) Để \(A=1\)

\(\Leftrightarrow\frac{2x-1}{x+1}=1\)

\(\Leftrightarrow2x-1=x+1\)

\(\Leftrightarrow x=2\)

b) Để \(A< 2\)

\(\Leftrightarrow\frac{2x-1}{x+1}< 2\)

\(\Leftrightarrow\frac{2x-1}{x+1}-2< 0\)

\(\Leftrightarrow2x-1-2x-1< 0\)

\(\Leftrightarrow-2< 0\)(luôn đúng)

Vậy A < 2 <=> mọi x