Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+.....+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+.....+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+....+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+...+\frac{10^2-9^2}{9^2.10^2}\)
\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+...+\frac{1}{9^2}-\frac{1}{10^2}\)
\(=1-\frac{1}{10^2}< 1\)
3/12.22 + 5/22.32 + 7/32.42 + ... + 19/92.102
= 3/1.4 + 5/4.9 + 7/9.16 + ... + 19/81.100
= 1 - 1/4 + 1/4 - 1/9 + 1/9 - 1/16 + ... + 1/81 - 1/100
= 1 - 1/100
= 99/100
\(A=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+..+\frac{17}{64.81}+\frac{19}{81.100}\)
\(A=\frac{4-1}{1.4}+\frac{9-4}{4.9}+\frac{16-9}{9.16}+...+\frac{81-64}{64.81}+\frac{100-81}{81.100}\)
\(A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{61}-\frac{1}{81}+\frac{1}{81}-\frac{1}{100}\)
\(A=1-\frac{1}{100}=\frac{99}{100}\)
Cho \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}\)... là A, ta có:
A = \(\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+...+\frac{10^2-9^2}{9^2.10^2}\)
A = \(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{2^2}+...\frac{1}{9^2}-\frac{1}{10^2}\)
A = 1 \(-\frac{1}{10^2}\) <1
Vậy: A < 1
A<1
bạn tính phần mẫu ra rồi làm như dạng sai phân bình thường
Chứng minh rằng:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}<1\)
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+...+\frac{1}{9^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\)
Vậy \(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+....+\frac{19}{9^2.10^2}<1\)
=> 1 - 1 /2^2 + 1 /2^2 -1 /3^2 + 1/3^2 - 1/4^2 + .... + 1/9^2 - 1/10^2 <1
=> 1 - 1/10^2 <1 ( luôn đúng )
=> điều phải chứng minh
dễ vct \(\frac{3}{1^2.2^2}=\frac{1}{1^2}-\frac{1}{2^2}\)
tương tự
a với e chi ở đây