K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2016

B = -3(x2 +3x + 9/4 -9/4) -7 

B = -3(x+3/2)2 -7 +27/4

GTLN B = -1/4

11 tháng 9 2016

B = -3(x2 +3x + 9/4 -9/4) -7 

B = -3(x+3/2)2 -7 +27/4

GTLN B = -1/4

26 tháng 7 2016

P= -(x2 + 2.3x/2 + 9/4) +3 +9/4

GTLN: P = 21/4

26 tháng 7 2016

\(P=-\left(x^2+3x-3\right)=-\left(x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{21}{4}\right)=-\left[\left(x+\frac{3}{2}\right)^2-\frac{21}{4}\right]=-\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\)

Do \(\left(x+\frac{3}{2}\right)^2\ge0,x\in R\)

nên \(-\left(x+\frac{3}{2}\right)^2\le0,x\in R\) 

mà \(-\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\le\frac{21}{4},x\in R\)

VẬy \(Max_P=\frac{21}{4}\)khi \(x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

Các bạn ơi giúp nk nhé !

Tìm GTLN của biểu thức A = -5²-2 | y+3 |+7

15 tháng 9 2020

Q = (1 - 2x)(x - 3)

= x - 3 - 2x2 + 6x

= - 2x2 + 5x - 3

\(-2\left(x^2-\frac{5}{2}x+3\right)=-2\left(x^2-2.\frac{5}{4}.x+\frac{25}{16}+\frac{23}{16}\right)=-2\left(x-\frac{5}{4}\right)^2-\frac{23}{8}\le-\frac{23}{8}\)

Dấu "=" xảy ra <=> x  - 5/4 = 0

=> x = 1,25

Vậy Max Q = -23/8 <=> x = 1,25

15 tháng 9 2020

Q = ( 1 - 2x )( x - 3 )

= x - 3 - 2x2 + 6x

= -2x2 + 7x - 3

= -2( x2 - 7/2x + 49/16 ) + 25/8

= -2( x - 7/4 )2 + 25/8 ≤ 25/8 ∀ x

Đẳng thức xảy ra <=> x - 7/4 = 0 => x = 7/4

=> MaxQ = 25/8 <=> x = 7/4

a:Ta có: \(A=-4x^2+x-1\)

\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{63}{64}\right)\)

\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{63}{16}\le-\dfrac{63}{16}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{8}\)

b: Ta có: \(B=-3x^2+5x+6\)

\(=-3\left(x^2-\dfrac{5}{3}x-2\right)\)

\(=-3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{97}{36}\right)\)

\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{6}\)

c: Ta có: \(C=-x^2+3x+4\)

\(=-\left(x^2-3x-4\right)\)

\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{25}{4}\right)\)

\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)

1 tháng 8 2017

/ là phần nha

1 tháng 8 2017

CHI GIẢI CHO NÈ

A=\(\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}=\frac{x-1}{x-3}\)

de A <1 \(\Leftrightarrow\frac{x-1}{x-3}< 1\Leftrightarrow\frac{x-1}{x-3}-1< 0\)

                \(\Leftrightarrow\frac{2}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)

11 tháng 3 2019

a) \(A=\frac{3x^2+6x+10}{x^2+2x+3}\)

\(A=\frac{3x^2+6x+9+1}{x^2+2x+3}\)

\(A=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}\)

\(A=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{1}{x^2+2x+1+2}\)

\(A=3+\frac{1}{^{\left(x+1\right)^2+2}}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-1\)

9 tháng 4 2022

sai

8 tháng 8 2017

1/ \(M=x^2-2x.15+225-198\)

\(M=\left(x-15\right)^2-198\ge-198\)

\(Min\)\(M=-198\Leftrightarrow x=15\)