Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=-\left(x^2+3x-3\right)=-\left(x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{21}{4}\right)=-\left[\left(x+\frac{3}{2}\right)^2-\frac{21}{4}\right]=-\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\)
Do \(\left(x+\frac{3}{2}\right)^2\ge0,x\in R\)
nên \(-\left(x+\frac{3}{2}\right)^2\le0,x\in R\)
mà \(-\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\le\frac{21}{4},x\in R\)
VẬy \(Max_P=\frac{21}{4}\)khi \(x+\frac{3}{2}=0\Rightarrow x=-\frac{3}{2}\)
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
Các bạn ơi giúp nk nhé !
Tìm GTLN của biểu thức A = -5²-2 | y+3 |+7
Q = (1 - 2x)(x - 3)
= x - 3 - 2x2 + 6x
= - 2x2 + 5x - 3
= \(-2\left(x^2-\frac{5}{2}x+3\right)=-2\left(x^2-2.\frac{5}{4}.x+\frac{25}{16}+\frac{23}{16}\right)=-2\left(x-\frac{5}{4}\right)^2-\frac{23}{8}\le-\frac{23}{8}\)
Dấu "=" xảy ra <=> x - 5/4 = 0
=> x = 1,25
Vậy Max Q = -23/8 <=> x = 1,25
Q = ( 1 - 2x )( x - 3 )
= x - 3 - 2x2 + 6x
= -2x2 + 7x - 3
= -2( x2 - 7/2x + 49/16 ) + 25/8
= -2( x - 7/4 )2 + 25/8 ≤ 25/8 ∀ x
Đẳng thức xảy ra <=> x - 7/4 = 0 => x = 7/4
=> MaxQ = 25/8 <=> x = 7/4
a:Ta có: \(A=-4x^2+x-1\)
\(=-4\left(x^2-\dfrac{1}{4}x+\dfrac{1}{4}\right)\)
\(=-4\left(x^2-2\cdot x\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{63}{64}\right)\)
\(=-4\left(x-\dfrac{1}{8}\right)^2-\dfrac{63}{16}\le-\dfrac{63}{16}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{8}\)
b: Ta có: \(B=-3x^2+5x+6\)
\(=-3\left(x^2-\dfrac{5}{3}x-2\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{97}{36}\right)\)
\(=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{6}\)
c: Ta có: \(C=-x^2+3x+4\)
\(=-\left(x^2-3x-4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{25}{4}\right)\)
\(=-\left(x-\dfrac{3}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
CHI GIẢI CHO NÈ
A=\(\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}=\frac{x-1}{x-3}\)
de A <1 \(\Leftrightarrow\frac{x-1}{x-3}< 1\Leftrightarrow\frac{x-1}{x-3}-1< 0\)
\(\Leftrightarrow\frac{2}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)
a) \(A=\frac{3x^2+6x+10}{x^2+2x+3}\)
\(A=\frac{3x^2+6x+9+1}{x^2+2x+3}\)
\(A=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}\)
\(A=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{1}{x^2+2x+1+2}\)
\(A=3+\frac{1}{^{\left(x+1\right)^2+2}}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=-1\)
1/ \(M=x^2-2x.15+225-198\)
\(M=\left(x-15\right)^2-198\ge-198\)
\(Min\)\(M=-198\Leftrightarrow x=15\)
B = -3(x2 +3x + 9/4 -9/4) -7
B = -3(x+3/2)2 -7 +27/4
GTLN B = -1/4
B = -3(x2 +3x + 9/4 -9/4) -7
B = -3(x+3/2)2 -7 +27/4
GTLN B = -1/4