Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a}{k}=\frac{x}{a}\Rightarrow a^2=kx\) (1)
\(\frac{b}{k}=\frac{y}{b}\Rightarrow b^2=ky\) (2)
Chia hai vế của (1) cho (2) ta được :
\(\frac{a^2}{b^2}=\frac{kx}{ky}\)\(\Rightarrow\frac{a^2}{b^2}=\frac{x}{y}\) (đpcm)
Áp dụng tc dãy tỉ số bằng nhau ta có:\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}=x+y+z\)\(\Rightarrow\dfrac{x^2}{a^2}=\left(x+y+z\right)^2\left(1\right)\)
Từ \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}=x^2+y^2+z^2\)
\(\Rightarrow\dfrac{x^2}{a^2}=x^2+y^2+z^z\left(2\right)\)
Từ (1),(2)\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\)
+Ta có :\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)\(=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)(vì a + b+c =1)
=>\(\left(\dfrac{x^2}{a^2}\right)=\left(\dfrac{y^2}{b^2}\right)=\left(\dfrac{z^2}{c^2}\right)=\dfrac{\left(x+y+z\right)2}{1}\)(1)
+Vì \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
\(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2+y^2+z^2}{1}\)(vì a2 + b2 + c2 =1 ) (2)
Từ (1) và(2)=> ( x + y + z )2 = x2 + y2 + z2.
Vậy.........
Đặt \(\dfrac{x}{a}\) = \(\dfrac{y}{b}\) = \(\dfrac{z}{c}\) = k \(\Rightarrow\)x=ak;y=bk ; z=ck.
(x+y+z)2=(ak+bk+ ck)2=[k(a+b+c)]2=
k2(a+b+c)2=k2(vì a+b+c=1nên(a+b+c)2=1)(1)
x2+y2+z2=(ka)2+(kb)2+(kc)2=k2a2+k2b2+k2b2
=k2(a2+b2+c2)=k2 (vì a2+b2+c2=1) (2)
Từ (1) và (2), \(\Rightarrow\) (x+y+z)2=x2+y2+z2=k2
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
Ta có:
\(\frac{a}{k}=\frac{x}{a}\Leftrightarrow a^2=kx\)
\(\frac{b}{k}=\frac{y}{b}\Leftrightarrow b^2=ky\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{kx}{ky}=\frac{x}{y}\)
thank you very múc