Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x + 5 < 0 => 2x < - 5 => x < -2,5
b) -4 - 5x > 0 => -4 > 5x => -0,8 > x
c) -7x + 3 < 0 => -7x < -3 => x > 3/7
d) x - 7 > 0 => x > 7
e) -3 + 4x > 0 => 4x > 3 => x > 0,75
\(a,2x+5< 0\) \(b,-4-5x>0\)
\(\Rightarrow2x< -5\) \(\Rightarrow-4>5x\)
\(\Rightarrow x< -\frac{5}{2}\) \(\Rightarrow x< -\frac{4}{5}\)
\(c,-7x+3< 0\) \(d,x-7>0\)
\(\Rightarrow-7x< -3\) \(\Rightarrow x>7\)
\(\Rightarrow x>\frac{3}{7}\)
\(e,-3+4x>0\)
\(\Rightarrow4x>3\)
\(\Rightarrow x>\frac{3}{4}\)
Vi n > 2 => n co 3 dang sau : 3k+1 , 3k , 3k+2
Nếu n có dạng 3k+1 thì thay n=3k+1 vào 2n+1 thì 2n+1 chia hết cho 2 ( loại )
Nếu n có dạng 3k+2 thì thay n=3k+2 vào 2n+1 thì 2n+1 chia hết cho 3 ( loại )
Nếu n có dạng 3k thì thay n=3k vào 2n+1 thì 2n+1 là SNT
Thay n=3k vào 2n-1 thì 2n-1 là SNT
( giải chi tiết ra nha bà chj)
Ta có : 333444 và 8111*111444
Rút gọn cả 2 vế cho 111444 ta có phép so sánh:
3444 và 8111
ta có 8111=2333
=> so sánh 3444 và 2333 => 3444> 2333
vậy 333444>8111*111444
Với a,b \(\in\)Z, b >0.
Ta có : a < b
\(\Rightarrow\)a + ab < b + ab
\(\Rightarrow\)a(b+1) < b(a+1)
\(\Rightarrow\)\(\frac{a}{b}< \frac{a+1}{b+1}\)
trả lời :
a/b < a+1/b+1
vì:
a cũ sẽ nhỏ hơn a mới 1 đơn vị
b cũ cũng sẽ nhỏ hơn b mới 1 đơn vị
mà a<b
nên có thể a + 1 sẽ = b cũ
ví dụ:
a=5
b=6
thì ta có:
5/6 và 5+1/6+1
=>5/6 và 6/7
nếu quy đồng 2 mẫu số thì ta có:
35/42 và 36/42
mà35/42 < 36/42
=> a/b < a+1/b+1
Qui đồng mẫu số:
a/b = a(b+2001) / b(b+2001) = ab + 2001a / b(b+2001)
a+2001 / b + 2001 = (a+2001)b / (b + 2001)b = ab + 2001b / b(b+2001)
Vì b>0 nên mẫu số của hai phân số trên dương.
Chỉ cần so sánh tử số. '
So sánh ab + 2001a với ab + 2001b
Nếu a < b => tử số phân số thứ nhất < tử số phân số thứ hai
=>a/b < a+2001/b+2001
Nếu a = b
=> hai phân số bằng nhau = 1
Nếu a > b
=> Tử số phân số thứ nhất lớn hơn tử số phân số thứ hai
=> a/b > a+2001/ b +2001
Xét tích a(b + 2001) = ab + 2001a (1)
b(a + 2001) = ab + 2001b (2)
TH1: nếu a < b
=> 2001a < 2001b (3)
Từ (1),(2),(3) => a(b + 2001) < b(a + 2001) => \(\frac{a}{b}< \frac{a+2001}{b+2001}\)
TH2: nếu a > b
=> 2001a > 2001b (4)
Từ (1),(2),(4) => a(b+2001)>b(a+2001) => \(\frac{a}{b}>\frac{a+2001}{b+2001}\)
TH3: nếu a = b => \(\frac{a}{b}=\frac{a+2001}{b+2001}=1\)