Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(A=\left(\dfrac{\left(x-1\right)\left(x^2+x+1\right)}{x\left(x-1\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+x+1}{x}+\dfrac{x+2}{x}+\dfrac{x-2}{x}\right):\dfrac{x+1}{x}\)
\(=\left(\dfrac{x^2+3x+1}{x}\right).\dfrac{x}{x+1}\)
\(=\dfrac{x^2+3x+1}{x+1}\)
2.
\(x^3-4x^3+3x=0\Leftrightarrow x\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=1\left(loại\right)\\x=3\end{matrix}\right.\)
Với \(x=3\Rightarrow A=\dfrac{3^2+3.3+1}{3+1}=\dfrac{19}{4}\)
Bài 4:
a. Vì $\triangle ABC\sim \triangle A'B'C'$ nên:
$\frac{AB}{A'B'}=\frac{BC}{B'C'}=\frac{AC}{A'C'}(1)$ và $\widehat{ABC}=\widehat{A'B'C'}$
$\frac{DB}{DC}=\frac{D'B'}{D'C}$
$\Rightarrow \frac{BD}{BC}=\frac{D'B'}{B'C'}$
$\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}(2)$
Từ $(1); (2)\Rightarrow \frac{BD}{B'D'}=\frac{BC}{B'C'}=\frac{AB}{A'B'}$
Xét tam giác $ABD$ và $A'B'D'$ có:
$\widehat{ABD}=\widehat{ABC}=\widehat{A'B'C'}=\widehat{A'B'D'}$
$\frac{AB}{A'B'}=\frac{BD}{B'D'}$
$\Rightarrow \triangle ABD\sim \triangle A'B'D'$ (c.g.c)
b.
Từ tam giác đồng dạng phần a và (1) suy ra:
$\frac{AD}{A'D'}=\frac{AB}{A'B'}=\frac{BC}{B'C'}$
$\Rightarrow AD.B'C'=BC.A'D'$
ĐKXĐ: \(\left|x-2\right|-1\ne0\)
\(\Rightarrow\left|x-2\right|\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}x-2\ne1\\x-2\ne-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\ne3\\x\ne1\end{matrix}\right.\)
Bài 2:
1: ĐKXĐ: \(x\notin\left\{1;-1\right\}\)
\(A=\left(\dfrac{x+3}{2x+2}+\dfrac{3}{1-x^2}-\dfrac{x+1}{2x-2}\right):\dfrac{3}{2x^2-2}\)
\(=\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{2\left(x-1\right)}\right)\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{3}\)
\(=\dfrac{\left(x+3\right)\left(x-1\right)-6-\left(x+1\right)^2}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{2\left(x-1\right)\left(x+1\right)}{3}\)
\(=\dfrac{x^2+2x-3-6-x^2-2x-1}{3}=\dfrac{-10}{3}\) không phụ thuộc vào biến x
Bài 4:
1:
Xét ΔCAF vuông tại A và ΔCHE vuông tại H có
\(\widehat{ACF}=\widehat{HCE}\)
Do đó: ΔCAF~ΔCHE
2: Ta có ΔCAF~ΔCHE
=>\(\widehat{CFA}=\widehat{CEH}\)
mà \(\widehat{CEH}=\widehat{AEF}\)(hai góc đối đỉnh)
nên \(\widehat{AEF}=\widehat{AFE}\)
=>ΔAEF cân tại A
Xét ΔCAH vuông tại H và ΔCBA vuông tại A có
\(\widehat{ACH}\) chung
Do đó: ΔCAH~ΔCBA
=>\(\dfrac{CA}{CB}=\dfrac{CH}{CA}\left(1\right)\)
Xét ΔCAH có CE là phân giác
nên \(\dfrac{HE}{AE}=\dfrac{CH}{CA}\left(2\right)\)
Xét ΔCAB có CF là phân giác
nên \(\dfrac{AF}{FB}=\dfrac{CA}{CB}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{HE}{AE}=\dfrac{AF}{FB}\)
=>\(HE\cdot FB=AE\cdot AF=AE^2\)