K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2017

ta có : \(\left(p\right)\) có đỉnh \(I\left(\dfrac{1}{3};\dfrac{-4}{3}\right)\)

\(\Rightarrow\) điểm đối xướng \(x=\dfrac{-b}{2a}=\dfrac{1}{3}\Leftrightarrow2a=-3b\Leftrightarrow2a+3b=0\) (1)

\(I\left(\dfrac{1}{3};\dfrac{-4}{3}\right)\) đồng thời cũng thuộc \(\left(p\right)\)

\(\Rightarrow\left(\dfrac{1}{3}\right)^2a+\dfrac{1}{3}b+c=\dfrac{-4}{3}\Leftrightarrow\dfrac{1}{9}a+\dfrac{1}{3}b+c=\dfrac{-4}{3}\) (2)

ta có : \(\left(p\right)\) đi qua đỉnh \(A\left(1;0\right)\) \(\Rightarrow A\left(1;0\right)\in\left(p\right)\)

\(\Rightarrow1^2.a+1.b+c=0\Leftrightarrow a+b+c=0\) (3)

từ (1) ; (2)(3) ta có được hệ phương trình 3 ẩn

\(\left\{{}\begin{matrix}2a+3b=0\\\dfrac{1}{9}a+\dfrac{1}{3}b+c=\dfrac{-4}{3}\\a+b+c=0\end{matrix}\right.\) bấm máy tính ta tìm được \(\left\{{}\begin{matrix}a=3\\b=-2\\c=-1\end{matrix}\right.\)

vậy parabol \(y=ax^2+bx+c\) cần tìm là \(y=3x^2-2b-1\)

4 tháng 9 2021

Tìm Parabol (P): y=ax2​+bx+c  đi qua điểm A(1;0) và có tung độ đỉnh bằng -1

25 tháng 10 2018

Gọi (P) : y= \(ax^2+bx+c\)

Vì (P) đi qua gốc tọa độ

nên (P) cắt điểm A (0;0)

A(0;0) ∈ (P) ⇔ 0= c

Mà (P) có đỉnh I(-1;-3)

\(\left\{{}\begin{matrix}\dfrac{-b}{2a}=-1\\-3=a-b+c\end{matrix}\right.\)

\(\left\{{}\begin{matrix}-2a+b=0\\a-b=-3\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a=3\\b=6\end{matrix}\right.\)

Vậy a = 3 , b = 6 , c = 0

6 tháng 9 2021

ca này khó

6 tháng 9 2021

pls help

NV
10 tháng 10 2019

Từ đề bài ta có:

a/ \(\left\{{}\begin{matrix}0.a+0.b+c=0\\a+b+c=1\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=2\\c=0\end{matrix}\right.\) \(\Rightarrow y=-x^2+2x\)

b/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=8\\0.a+0.b+c=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=-6\end{matrix}\right.\)

c/ \(\left\{{}\begin{matrix}0.a+0.b+c=5\\-\frac{b}{2a}=3\\\frac{b^2-4ac}{4a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)

d/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=0\\-\frac{b}{2a}=\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k\\b=-3k\\c=2k\end{matrix}\right.\) với k là số thực khác 0 bất kì

AH
Akai Haruma
Giáo viên
30 tháng 12 2019

Lời giải:

Ta có:

$y'=2x+b$

Hoành độ đỉnh $I$ của parabol là nghiệm của PT $y'=0$

$\Leftrightarrow x_I=\frac{-b}{2}$

Tung độ của $I$: $y_I=x_I^2+bx_I+c=(\frac{-b}{2})^2+b.\frac{-b}{2}+c=c-\frac{b^2}{4}=-1(*)$

Mặt khác $(P)$ đi qua điểm $A(1,0)$ nên: \(y_A=x_A^2+bx_A+c\)

hay \(0=1+b+c(**)\)

Từ $(*); (**)\Rightarrow b=0$ hoặc $b=-4$

Nếu $b=0\rightarrow c=-1$

Nếu $b=-4\rightarrow c=3$

Vậy $(P): y=x^2-1$ hoặc $(P): y=x^2-4x+3$

AH
Akai Haruma
Giáo viên
23 tháng 12 2019

Lời giải:

Ta có:

$y'=2x+b$

Hoành độ đỉnh $I$ của parabol là nghiệm của PT $y'=0$

$\Leftrightarrow x_I=\frac{-b}{2}$

Tung độ của $I$: $y_I=x_I^2+bx_I+c=(\frac{-b}{2})^2+b.\frac{-b}{2}+c=c-\frac{b^2}{4}=-1(*)$

Mặt khác $(P)$ đi qua điểm $A(1,0)$ nên: \(y_A=x_A^2+bx_A+c\)

hay \(0=1+b+c(**)\)

Từ $(*); (**)\Rightarrow b=0$ hoặc $b=-4$

Nếu $b=0\rightarrow c=-1$

Nếu $b=-4\rightarrow c=3$

Vậy $(P): y=x^2-1$ hoặc $(P): y=x^2-4x+3$

6 tháng 9 2021

có ai chơi ff ko

15 tháng 8 2021

mình nghĩ pt (P) : y = ax^2 - bx + c chứ ? 

a, (P) đi qua điểm A(0;-1) <=> \(c=-1\)

(P) đi qua điểm B(1;-1) <=> \(a-b+c=-1\)(1) 

(P) đi qua điểm C(-1;1)  <=> \(a+b+c=1\)(2) 

Thay c = -1 vào (1) ; (2) ta được : \(a-b=0;a+b=2\Rightarrow a=1;b=1\)

Vậy pt Parabol có dạng \(x^2-x-1=y\)

15 tháng 8 2021

Bài 1b 

(P) đi qua điểm A(8;0) <=> \(64a-8b+c=0\)

(P) có đỉnh I(6;12) \(\Rightarrow\hept{\begin{cases}-\frac{b}{2a}=6\\36a-6b+c=-12\end{cases}}\Rightarrow a=3;b=-36;c=96\)

Vậy pt Parabol có dạng : \(9x^2+36x+96=y\)

tương tự nhé 

24 tháng 9 2019

y=-2x^2-3x+4

24 tháng 9 2019

Hi cj iu ! Mà s cj onl muộn thế ,pé sắp ngủ òi !

Cai nay la mon Sinh hoc dung khong?

NM
6 tháng 9 2021

ta có hệ sau :

\(\hept{\begin{cases}a.3^2+b.3-1=-7&-\frac{b}{2a}=1&\end{cases}\Leftrightarrow\hept{\begin{cases}9a+3b=-6\\b=-2a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-2\\b=4\end{cases}}}\)

vậy \(2a+b=0\)