Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số dư của a khi chia cho 72 là r (0<=r<72) ta có:
+) r chia 9 dư 7 => r thuộc { 7;16;25;34;43;52;61;70}
mà r chia 8 dư 3 => r=43
Giả sử : a chia cho 17 bằng b dư 11
\(\Rightarrow a=17b+11\Rightarrow a+74=17b+11+74\)
\(\Rightarrow a+74=17b+85⋮17\left(1\right)\)
Giả sử : a chia cho 23 bằng c dư 18
\(\Rightarrow a=23c+18\Rightarrow a+74=23c+18+74\)
\(\Rightarrow a+74=23c+92⋮23\left(2\right)\)
Giả sử : a chia cho 11 bằng d dư 13
\(\Rightarrow a=11d+3\Rightarrow a+74=11d+3+74\)
\(\Rightarrow a+74=11d+77⋮11\left(3\right)\)
Từ \(\left(1\right)\left(2\right)\left(3\right)\Rightarrow a+74\in BC\left(17;23;11\right)\)
\(BCNN\left(17;23;11\right)=17.23.11=4301\)
\(\Rightarrow a+74\in B\left(4301\right)\)
\(\Rightarrow a+74=4301q\left(q\inℕ^∗\right)\)
\(\Rightarrow a+74-4301=4301q-4301\)
\(\Rightarrow a-4227=4301\left(q-1\right)\)
\(\Rightarrow a=4301\left(q-1\right)+4227\)
Vậy a chia cho 4301 dư 4227
~ học tốt ~
nhớ