Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(27x^3-54x^2+36x=8\)
\(\Rightarrow27x^3-54x^2+36x-8=0\)
\(\Rightarrow\left(3x\right)^3-3.\left(3x\right)^2.2+3.3x.2^2-2^3=0\)
\(\Rightarrow\left(3x-2\right)^3=0\)
\(\Rightarrow3x-2=0\)
\(\Rightarrow3x=2\)
\(\Rightarrow x=\dfrac{2}{3}\)
(2x-5)^2-(5+2x)^2=0
<=>(2x-5-5-2x)(2x-5+5+2x)=0
<=>(-10).(4x)=0
<=>(-40x)=0
<=>x =0
27x^3-54x^2+36x=8
<=>27x^3-54x^2+36x-8=0
<=>(3x-2)^3=0
<=>3x-2=0
<=>3x=2
<=>x=2/3
a/ \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
b/ \(\left(x-2\right)^3+\left(5-2x\right)^3=0\)
\(\Leftrightarrow\left(x-2+5-2x\right)\left[\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right]=0\)
\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4+2x^2-5x-4x+10+25-20x+4x^2\right)=0\)
\(\Leftrightarrow\left(3-x\right)\left(7x^2-33x+29\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3-x=0\\7x^2-33x+29=0\end{matrix}\right.\)
+) 3 - x = 0 => x = 3
+) \(7x^2-33x+29=0\)
\(\Leftrightarrow\left(\sqrt{7}x\right)^2-2\cdot\sqrt{7}x\cdot\dfrac{33\sqrt{7}}{14}+\dfrac{1089}{28}-\dfrac{277}{28}=0\)
\(\Leftrightarrow\left(\sqrt{7}x-\dfrac{33\sqrt{7}}{14}\right)^2=\dfrac{277}{28}\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{7}x-\dfrac{33\sqrt{7}}{14}=\sqrt{\dfrac{277}{28}}\\\sqrt{7}x-\dfrac{33\sqrt{7}}{28}=-\sqrt{\dfrac{277}{28}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{33+\sqrt{277}}{14}\\x=\dfrac{33-\sqrt{277}}{14}\end{matrix}\right.\)
Thử lại thấy chỉ có x = 3 thỏa mãn
Vậy pt có 1 nghiệm x = 3
bài 2:
a/ \(\left(n+3\right)^2-\left(n-1\right)^2=\left(n+3-n+1\right)\left(n+3+n-1\right)=4\left(2n+2\right)=8\left(n+1\right)⋮8\left(đpcm\right)\)
b/ \(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6-n+6\right)\left(n+6+n-6\right)=12\cdot2n=24n⋮24\)
tiện bạn giải luôn giùm mih con này đc ko
tính nhanh
54^2+82^2-18^2-46
tìm x
4x^2-4x=-1
Bài 2:
a: \(=x\left(x^2-4\right)=x\left(x-2\right)\left(x+2\right)\)
b: \(=2xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(2xy-1\right)\)
Bài 3:
=>x^2=5
hay \(x=\pm\sqrt{5}\)
a, \(3x+2\left(x-5\right)=6-\left(5x-1\right)\)
\(\Leftrightarrow3x+2x-10=6-5x+1\)
\(\Leftrightarrow-15\ne0\)Vậy phương trình vô nghiệm
b, \(x^3-3x^2-x+3=0\)
\(\Leftrightarrow x\left(x^2-1\right)-3\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=3;\pm1\)
Vậy tập nghiệm của phương trình là S = { 1 ; -1 ; 3 }
c, \(\frac{1}{x-3}+\frac{x}{x+3}=\frac{2}{x^2-9}ĐK:x\ne\pm3\)
\(\Leftrightarrow\frac{x+3}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{2}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow x+3+x^2-3x-2=0\)
\(\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)thỏa mãn
Vậy ...
phân tích đa thức sau thành nhân tử:
a) x2+2x-y2+1
=x\(^2\)+2x+1-y\(^2\)
=(x+1)\(^2\)-y\(^2\)
=(x+1-y)(x+1+y)
b) x2+3x-y2+3y
=x\(^2\)-y\(^2\)+3x+3y
=(x-y)(x+y)+3(x+y)
=(x+y)(x-y+3)
c) 3(x+3)-x2+9
=3(x+3)-(x\(^2\)-3\(^2\))
=3(x+3)-(x-3)(x+3)
=(x+3)[3-(x-3)]
=(x+3)(3-x+3)
a)
\(2x+3=(2x+3)^2\)
\(\Leftrightarrow (2x+3)^2-(2x+3)=0\)
\(\Leftrightarrow (2x+3)(2x+3-1)=0\)
\(\Leftrightarrow (2x+3)(2x+2)=0\Rightarrow \left[\begin{matrix} 2x+3=0\\ 2x+2=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-\frac{3}{2}\\ x=-1\end{matrix}\right.\)
b) \((x-5)^2=5-x\)
\(\Leftrightarrow (x-5)^2+(x-5)=0\)
\(\Leftrightarrow (x-5)(x-5+1)=0\)
\(\Leftrightarrow (x-5)(x-4)=0\)
\(\Rightarrow \left[\begin{matrix} x-5=0\\ x-4=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=5\\ x=4\end{matrix}\right.\)
c) \((x+2)^3=x+2\)
\(\Leftrightarrow (x+2)^3-(x+2)=0\)
\(\Leftrightarrow (x+2)[(x+2)^2-1]=0\)
\(\Leftrightarrow (x+2)(x+2-1)(x+2+1)=0\)
\(\Leftrightarrow (x+2)(x+1)(x+3)=0\)
\(\Rightarrow \left[\begin{matrix} x+2=0\\ x+1=0\\ x+3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=-2\\ x=-1\\ x=-3\end{matrix}\right.\)
d)
\(|3x-1|=(1-3x)^2\)
\(\Leftrightarrow |3x-1|=|3x-1|^2\)
\(\Leftrightarrow |3x-1|^2-|3x-1|=0\)
\(\Leftrightarrow |3x-1|(|3x-1|-1)=0\)
\(\Rightarrow \left[\begin{matrix} |3x-1|=0\\ |3x-1|-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} |3x-1|=0\\ |3x-1|=1\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} 3x-1=0\\ 3x-1=\pm 1\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{1}{3}\\ x=\frac{2}{3}\\ x=0\end{matrix}\right.\)
e)
\(2x+(x+3)(3-x)+(x+1)(x-1)=7\)
\(\Leftrightarrow 2x+(3^2-x^2)+(x^2-1^2)=7\)
\(\Leftrightarrow 2x=-1\Rightarrow x=-\frac{1}{2}\)
\(\left(1-2x\right)^2=\left(3x-2\right)^2\)
\(=\left(1-2x\right)^2-\left(3x-2\right)^2=0\)
\(\left(1-2x-3x+2\right)\left(1-2x+3x-2\right)=0\)
\(\left(3-5x\right)\left(x-1\right)=0\)
\(\Rightarrow3-5x=0\) \(x-1=0\)
\(\Rightarrow x=\frac{3}{5}\) or \(x=1\)
b)\(\left(x-2\right)^3+\left(5-2x\right)^3\)
=\(\left(x-2+5-2x\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right)\)
\(\left(3-x\right)\left(x^2-4x+4-5x+2x^2+10-4x+25-20x+4x^2\right)\)
(\(\left(3-x\right)\left(7x^2-33x+39\right)\)
..............