Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có tọa độ các điểm: A(-2; 2); B(-4; 0); C(1; 0); D(2; 4); E(3; -2); F(0; -2); G(-3; -2)
vẽ góc d1Od2 bằng 60 độ
lấy A bất kì nằm trong góc d1Od2
kẻ AB vuông góc với d1O tại B
từ B kẻ BC vuông góc với Od2 tại C
Cách vẽ: Vẽ đường thẳng d1 và d2 cắt nhau tại O sao cho \(\widehat{d_1Od_2=60^0}\).Vẽ A nằm trong \(\widehat{d_1}Od_2\) .Qua A ,vẽ đoạn thẳng AB vuông góc với đường thẳng d1 tại điểm B. Qua B, vẽ đoạn thẳng BC vuông góc với đường thẳng d2 tại C.
Thứ tự vẽ đường thẳng d' và d′⊥d như sau (xem hình vẽ).
- Đặt êke sao cho một mép góc vuông của êke đi qua điểm A, mép gấp vuông kia của êke nằm trên doạn thẳng d.
- Kẻ đoạn thẳng theo mép góc vuông của êke đi qua điểm A.
- Dùng êke kéo dài đoạn thẳng trên về hai phái thành đường thẳng d' vuông góc với d.
Minh họa cách vẽ đường thẳng d' đi qua điểm A và vuông gó với đường thẳng d cho trước chỉ bằng êke bằng hình vẽ sau đây:
.
Vẽ đường thẳng xy đi qua điểm O sao cho xy // a
Gọi tên các đỉnh như hình vẽ
Ta có \(\widehat{A1}=\widehat{B1}=38^0\)(vì xy//a ,so le trong)
Vì a//b mà xy//a \(\Rightarrow xy\)//b
Ta có \(\widehat{O2}+\widehat{B1}=180^0\)(vì xy//b,trong cùng phía)
Hay \(\widehat{O2}+132^0=180^0\)
\(\Rightarrow\widehat{O2}=180^0-132^0\)
Vậy \(\widehat{O2}=48^0\)
Ta có \(\widehat{O1}+\widehat{O2}=\widehat{AOB}\)
Hay \(38^0+48^0=x\)
Suy ra \(x=86^0\)
Đáp án bài 57:
Kẻ c//a qua O ⇒ c//b
Ta có: a//c ⇒ ∠O1 = ∠A1 ( So le trong)
⇒ ∠O1 = 380
b//c ⇒ ∠O2 + ∠B1 = 1800 ( Hai góc trong cùng phía)
⇒ ∠O2 = 480
Vậy x = ∠O1 + ∠O2 = 380 + 480 x = 860
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED