K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

a) A = x(4x-1) - (4x2 -3)

A= 4x2 - x - 4x2 + 3

A= 3 -x

Vậy A= 3-x

b) B = (x+3y)(x-3y) - y(x+9y)

B= (x2 - 9y2) - xy - 9y2

B= x2 - xy - 18y2

c) C =(3x-9)(x2 + 3x +9) - 3x(x2 - 2)

C= 3(x-3)(x2 + 3x +9) - (3x3 - 6x)

C= 3(x3 - 27) - 3x3 + 6x

C= 3x3 - 81 - 3x3 + 6x 

C= 6x - 81

Vậy C= 6x -81 

16 tháng 3 2020

1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương 

\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)

4 tháng 5 2016

mày ngu vừa thôi chó 

nguyen thuy trang à

hahaha.......

4 tháng 5 2016

=1+2/x-3
Ngu có mức độ thôi chứ

25 tháng 6 2016

HC=9cm nha cac ban

25 tháng 6 2016

olm oi giup em vs 

9 tháng 3 2022

\(\left(a-1\right)\left(b-1\right)\left(c-1\right)=\left(ab-a-b+1\right)\left(c-1\right)=abc-ac-bc+c-ab+a+b-1=abc+\left(a+b+c\right)-\left(ab+bc+ca\right)-1\)\(\left(a-\dfrac{1}{b}\right)\left(b-\dfrac{1}{c}\right)\left(c-\dfrac{1}{a}\right)\ge\left(a-\dfrac{1}{a}\right)\left(b-\dfrac{1}{b}\right)\left(c-\dfrac{1}{c}\right)\)

\(\Leftrightarrow\dfrac{\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)}{abc}\ge\dfrac{\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)}{abc}\)

\(\Leftrightarrow\left(ab-1\right)\left(bc-1\right)\left(ca-1\right)\ge\left(a^2-1\right)\left(b^2-1\right)\left(c^2-1\right)\) (do a,b,c>1)

\(\Leftrightarrow a^2b^2c^2+\left(ab+bc+ca\right)-\left(ab^2c+a^2bc+abc^2\right)-1=a^2b^2c^2+\left(a^2+b^2+c^2\right)-\left(a^2b^2+b^2c^2+c^2a^2\right)\)

\(\Leftrightarrow ab+bc+ca-a^2bc-ab^2c-abc^2=a^2+b^2+c^2-a^2b^2-b^2c^2-c^2a^2\)

\(\Leftrightarrow ab+bc+ca-a^2bc-ab^2c-abc^2-a^2-b^2-c^2+a^2b^2+b^2c^2+c^2a^2=0\)

\(\Leftrightarrow bc\left(a^2-1\right)+ca\left(b^2-1\right)+ab\left(c^2-1\right)+a^2\left(b^2-1\right)+b^2\left(c^2-1\right)+c^2\left(a^2-1\right)=0\)

(luôn đúng do a,b,c>1)

12 tháng 3 2022

cảm ơn nha

 

24 tháng 2 2020

Vui lòng viết yêu cầu bài :>

24 tháng 2 2020

a, (x-2)(3x+5)=(2x-4)(x+1)
<=> (x-2)(3x+5)-2(x-2)(x+1)=0
<=>(x-2)(3x+5-2x-2)=0
<=>(x-2)(x+3)=0
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)

18 tháng 11 2019

\(A=x^2+2xy+y^2-4x-4y+1\)

\(A=\left(x+y\right)^2-4\left(x+y\right)+1\)

\(A=3^2-4.3+1\)

\(A=-2\)

\(x^2+2xy+y^2-4x-4y+\)\(1\)

\(=\left(x^2+2xy+y^2\right)-\left(4x+4y\right)+1\)

\(=\left(x+y\right)^2-4\left(x+y\right)+1\)

Thay x+y = 1, ta có:

\(=3^2-4.3+1=-2\)

22 tháng 7 2017

-x2-y2+8x+4y-21
=(-x2+8x-16)+(-y2+4y-4)-1
=-(x-4)2-(y-2)2-1
rồi đấy tự làm đi

20 tháng 12 2016

ạcaju lên bảo việt nhân thọ ấy