\(E=\sqrt{x}+2\sqrt{1-x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

\(\sqrt{x}+2\sqrt{1-x}\le\sqrt{\left(1+4\right)}=\sqrt{5}\)

Mà ta có điều kiện là \(0\le x\le1\)

=> E \(\ge1\)

Vậy GTLN là \(\sqrt{5}\)đạt được khi x = \(\frac{1}{5}\)

Đạt GTNN là 1 khi x = 1

6 tháng 7 2016

Ta có \(B=\frac{\sqrt{x}}{2}+\frac{2}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{2}+\frac{2}{\sqrt{x}-1}+\frac{1}{2}\)

Áp dụng bất đẳng thức Cosi được \(\frac{\sqrt{x}-1}{2}+\frac{2}{\sqrt{x}-1}\ge2\Rightarrow B\ge2+\frac{1}{2}=\frac{5}{2}\)

Dấu đẳng thức xảy ra <=> \(\sqrt{x}-1=2\Leftrightarrow x=9\)

Vậy Min B = \(\frac{5}{2}\Leftrightarrow x=9\)

\(A^2=2\left(x^2+1\right)+2\sqrt{\left(x^2+1\right)^2-x^2}.\)

          \(=2\left(x^2+1\right)+2\sqrt{x^4+x^2+1}\)

Vì \(x^2\ge0\)\(\Rightarrow A^2\ge2+2=4\)\(\Rightarrow A\ge2\)

Dấu "=" xảy ra khi x=0

10 tháng 8 2019

\(E=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)

    \(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)

    \(=2x-1+2x-3\)

    \(=4x-4\)

Làm nốt

12 tháng 7 2018

\(f\left(x\right)=\sqrt{3-x}+\sqrt{2+x}\ge\sqrt{3-x+2+x}=\sqrt{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}3-x=0\\2+x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)

Vậy GTNN của \(f\left(x\right)=\sqrt{5}\) khi và chỉ khi x = 3; x = -2

13 tháng 7 2018

bạn ơi ở bước:

f(x)=\(\sqrt{3-x}+\sqrt{2+x}\ge\sqrt{3-x+2+x}\)

làm sao bạn ra đc bất đẳng thức như vậy ạ

5 tháng 6 2019

ĐKXĐ \(x\ge0\)

Pt 

<=> \(\sqrt{x+3}\left(\sqrt{x}+1\right)=x+\sqrt{x}+2\)

Đặt \(\sqrt{x+3}=a,\sqrt{x}+1=b\left(a\ge0,b\ge1\right)\)

=> \(a^2+b^2=2x+2\sqrt{x}+4\)

Khi đó PT

<=> \(ab=\frac{a^2+b^2}{2}\)=> \(a=b\)

= >\(\sqrt{x+3}=\sqrt{x}+1\)

<=> \(2\sqrt{x}=2\)=>\(x=1\)(tm ĐKXĐ)

Vậy x=1