">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2021

\(a-b=2\Leftrightarrow a=b+2\)

\(P=3a^2+b^2+8\\ P=3\left(b+2\right)^2+b^2+8\\ P=3b^2+12b+12+b^2+8\\ P=4b^2+12b+20\\ P=\left(4b^2+12b+9\right)+11\\ P=\left(2b+3\right)^2+11\ge11\forall a;b\)

Dấu "=" xảy ra \(\Leftrightarrow b=\dfrac{-3}{2}\)

Pmin = 11

NM
29 tháng 8 2021

ta có 

\(A=B.\left|x-4\right|\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{1}{\sqrt{x}-5}.\left|x-4\right|\Leftrightarrow\sqrt{x}+2=\left|x-4\right|\)

Vậy :

\(\orbr{\begin{cases}\sqrt{x}+2=x-4\\\sqrt{x}+2=-x+4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-\sqrt{x}-6=0\\x+\sqrt{x}-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=3\\\sqrt{x}=1\end{cases}}}\)\(\Leftrightarrow\orbr{\begin{cases}x=9\\x=1\end{cases}}\)

29 tháng 8 2021

bạn cs chắc đây là đáp án đúng chứ

DD
20 tháng 8 2021

\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)

Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).

Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).

Do đó ta có đpcm. 

28 tháng 8 2021
Chào đồng hương tui cx lớp 9nek

Bài tập Tất cả

28 tháng 8 2021

Trả lời:

a, \(2\sqrt{45}+\sqrt{5}-3\sqrt{80}\)

\(=2\sqrt{3^2.5}+\sqrt{5}-3\sqrt{4^2.5}\)

\(=2.3\sqrt{5}+\sqrt{5}-3.4\sqrt{5}\)

\(=6\sqrt{5}+\sqrt{5}-12\sqrt{5}=-5\sqrt{5}\)

c, \(\left(\frac{3-\sqrt{3}}{\sqrt{3}-1}-\frac{2-\sqrt{2}}{1-\sqrt{2}}\right):\frac{1}{\sqrt{3}+\sqrt{2}}\)

\(=\left[\frac{\left(3-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{3-1}-\frac{\left(2-\sqrt{2}\right)\left(1+\sqrt{2}\right)}{1-2}\right].\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\left(\frac{3\sqrt{3}+3-3-\sqrt{3}}{2}-\frac{2+2\sqrt{2}-\sqrt{2}-2}{-1}\right).\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\left(\frac{2\sqrt{3}}{2}+\sqrt{2}\right).\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\frac{2\sqrt{3}+2\sqrt{2}}{2}.\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\frac{\left(2\sqrt{3}+2\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}{2}=\frac{6+2\sqrt{6}+2\sqrt{6}+4}{2}=\frac{10+4\sqrt{6}}{2}=5+2\sqrt{6}\)

22 tháng 8 2021

Với \(x\ge0;x\ne\pm16\)

\(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\)

\(=\left(\frac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\right):\frac{x+16}{\sqrt{x}-2}=\frac{\sqrt{x}-2}{x-16}\)

26 tháng 8 2016

1, \(\sqrt{\frac{-12}{x-5}}\) xác định khi \(\frac{-12}{x-5}\) \(\ge\) 0

→x-5<0→x<5

3. xác định khi x-2>0 →x>2

5.xác định khi \(\frac{4x-5}{x+2}\ge0\)và x\(\ne\)-2

\(\left[\begin{array}{nghiempt}\hept{\begin{cases}4x-5< 0\\x-3< 0\end{array}\right.\\\hept{\begin{cases}4x-5\ge0\\x-3>0\end{array}\right.\end{cases}\Rightarrow\left[\begin{array}{nghiempt}\hept{\begin{cases}x< \frac{5}{4}\\x< 3\end{array}\right.\\\hept{\begin{cases}x\ge\frac{5}{4}\\x>3\end{array}\right.\end{array}\right.}\)

 

31 tháng 8 2021

hình 1 : cho tam giác ABC vuông tại A, hạ đường cao AH, H thuộc BC 

Xét tam giác ABC vuông tại A, đường AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=y=\frac{AB^2}{BC}=\frac{225}{17}\)cm 

=> \(CH=x=BC-y=17-\frac{225}{17}=\frac{64}{17}\)cm 

* Áp dụng hệ thức : \(AC^2=c=CH.BC=\frac{64}{17}.17=64\Rightarrow AC=8\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=h=\frac{AB.AC}{BC}=\frac{15.8}{17}=\frac{120}{17}\)cm 

tương tự hình 2 ; 3 

1 tháng 9 2021

làm ko làm nốt luôn đi

dùng đã bt rồi nhưng cần kết quả để so sánh sai ở đâu