Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(x-2\right)^2-\left(x-2\right)^2-x^2+1\)
\(=\left(x-2\right)^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left[\left(x-2\right)^2-1\right]\left(x^2-1\right)\)
Làm tiếp cho chắc nhé
\(=\left(x-2-1\right)\left(x-2+1\right)\left(x-1\right)\left(x+1\right)\)
\(=\left(x-3\right)\left(x-1\right)\left(x-1\right)\left(x+1\right)\)
\(=\left(x-3\right)\left(x-1\right)^2\left(x+1\right)\)
\(a,\left(x-2\right)^2-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x=-10\)
\(\Leftrightarrow x=-\dfrac{5}{12}\)
Vậy:....
\(b,\left(5x+1\right)^2-\left(5x+3\right)\left(5x-3\right)=30\)
\(\Leftrightarrow25x^2+10x+1-25^2+9=30\)
\(\Leftrightarrow10x=20\)
\(\Rightarrow x=2\)
Vậy :....
\(c,\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)\(\Leftrightarrow x^3+27-x\left(x^2-4\right)=15\)
\(\Leftrightarrow x^3+27-x^3+4x=15\)
\(\Leftrightarrow4x=15-27=-12\)
\(\Leftrightarrow x=-3\)
vậy : .....
Câu trên làm (a) câu này làm (b)
b)
\(\left(x^2+x-2\right)\left(x^2+x-3\right)=12\)
đặt: \(x^2+x-2=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=t\)
\(t\left(t-1\right)=12\Leftrightarrow t^2-t+\frac{1}{4}=12+\frac{1}{4}=\frac{49}{4}\)
\(\left(t-\frac{1}{2}\right)^2=\left(\frac{7}{2}\right)^2\Rightarrow\left[\begin{matrix}t=\frac{1-7}{2}=-3\left(loai\right)\\t=\frac{1+7}{2}=4\end{matrix}\right.\)
\(t=4\Leftrightarrow\left(x+\frac{1}{2}\right)^2=4+\frac{9}{4}=\frac{25}{4}\Rightarrow\left[\begin{matrix}x=\frac{-1-5}{2}=-3\\x=\frac{-1+5}{2}=2\end{matrix}\right.\)
A = x2(x + y) - y(x2 - y) + 2002
A = x2.x + x2.y + (-y).x2 + (-y)(-y) + 2002
A = x3 + x2y - x2y + y2 + 2002
A = x3 + (x2y - x2y) + y2 + 2002
A = x3 + y2 + 2002 (1)
Thay x = 1, y = -1 vào (1), ta có:
A = x3 + y2 + 2002 = 13 + (-1)2 + 2002
= 1 + 1 + 2002
= 2004
B làm tương tự
a) \(\left(x+1\right)^2-2\left(x+1\right)\left(3-x\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1\right)^2+2\left(x+1\right)\left(x-3\right)+\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x+1+x-3\right)^2=0\)
\(\Leftrightarrow\left(2x-2\right)^2=0\)
\(\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
Vậy x = 1
b) \(\left(x+2\right)^2-2\left(x+2\right)\left(x-8\right)+\left(x-8\right)^2=0\)
\(\Leftrightarrow\left(x+2-x+8\right)^2=0\)
\(\Leftrightarrow\)\(\left(0x+10\right)^2=0\)
=> Phương trình vô nghiệm
\(8x^3+12x^2+6x+1=0.\)
\(\Leftrightarrow8x^2\left(x+\frac{1}{2}\right)+8x\left(x+\frac{1}{2}\right)+2\left(x+\frac{1}{2}\right)=0\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)\left(8x^2+8x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{1}{2}=0\\2\left(4x^2+4x+1\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{1}{2}\\2\left(2x+1\right)^2=0\Leftrightarrow x=-\frac{1}{2}\end{cases}}\)
Vậy pt có 1 No là...
\(2\left(x+5\right)-x^2-5x=0.\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)