K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2024

hơi khó nha

 

4 tháng 7 2024

a)

\(2^{2024}=2^{8.11.23}\)

\(2^8\equiv4\left(mod7\right)\)

\(2^{8.11}\equiv\left(2^8\right)^{11}\left(mod7\right)\equiv4^{11}\left(mod7\right)\equiv2\left(mod7\right)\)

\(\Rightarrow2^{8.11.23}\equiv\left(2^{8.11}\right)^{23}\left(mod7\right)\equiv2^{23}\left(mod7\right)\equiv4\left(mod7\right)\)

\(\Rightarrow2^{2024}\) chia 7 dư 4

\(41^{2023}=41.\left(41^2\right)^{1011}\)

\(41^2\equiv1\left(mod7\right)\)

\(\Rightarrow\left(41^2\right)^{1011}\equiv1^{1011}\left(mod7\right)\equiv1\left(mod7\right)\)

\(\Rightarrow41.\left(41^2\right)^{1011}\equiv41.1\left(mod7\right)\equiv6\left(mod7\right)\)

\(\Rightarrow2^{2024}+41^{2023}\equiv4+6\left(mod7\right)\equiv3\left(mod7\right)\)

Vậy \(2^{2024}+41^{2023}\) chia 7 dư 3

16 tháng 1 2016

Ta có : x^41+1=x(x^40-1)+x

                      =x[(x^4)^10-1]+x

Vì x[(x^4)^10-1] : (x^4-1)

Mà x^4-1 chia hết cho (x^2+1)         

Vậy dư của pháp chia x^41 cho x^2+1 là x

 

 

 

14 tháng 12 2015

@Lan Anh Nguyễn Chỉ chi tiết đi bạn -_-

3 tháng 4 2020

Cách hack điểm hỏi đáp trên OLM => https://www.youtube.com/watch?v=sMvl8_N_N54

DD
15 tháng 1 2022

\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\Rightarrow a,b,c\le1\Leftrightarrow a-1,b-1,c-1\le0\)

\(a^3+b^3+c^3-a^2-b^2-c^2=a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)

Suy ra \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)

mà \(a^2+b^2+c^2=1\)do đó trong ba số \(a,b,c\)có hai số bằng \(1\), một số bằng \(0\).

Khi đó \(a^{2022}+b^{2023}+c^{2024}=1+0+0=1\).