Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 17 :
- Ta có : AD là đường phân giác của tam giác ABC .\(\Rightarrow\dfrac{AB}{BD}=\dfrac{AC}{CD}\)
- Áp dụng tính chất dãy tỉ số bằng nhau :\(\dfrac{AB}{BD}=\dfrac{AC}{CD}=\dfrac{12}{BD}=\dfrac{16}{CD}\)
\(=\dfrac{12+16}{BD+CD}=\dfrac{28}{14}=2=\dfrac{16-12}{CD-BD}\)
\(\Rightarrow CD-BD=\dfrac{4}{2}=2\)
- Đáp án C.
Câu 16 :
- Ta có : \(\widehat{COB}=2\widehat{BAC}=120^o\)
- Ta lại có : \(S=S_{\stackrel\frown{BC}}-S_{OBC}=\dfrac{\pi R^2.120}{360}-\dfrac{1}{2}R.R.Sin120=\dfrac{\pi R^2}{3}-\dfrac{R^2\sqrt{3}}{4}\)
\(=\dfrac{R^2\left(4\pi-3\sqrt{3}\right)}{12}\) ( đvdt )
Đáp án D
Từ lúc dùng hoc24, mùa thi cử đã có kiến thức được khoanh vùng để ôn rồi, chứ lúc trước em chẳng biết bài nào đề mà ôn cả!!!
Cô ơi web dạo này bị lỗi hay sao mà cứ khi giái viên tick cho e lại có cái :"Bạn đã nhận được danh hiệu :Trung tướng" đi kèm mặc dù e đã qua nó rất lâu rồi
Gọi số giáo viên đạt cả hai danh hiệu giáo viên tài năng và giáo viên duyên dáng là x \(\left(x\inℕ^∗,\text{ }x< 30\right)\)
Số cô giáo đạt danh hiệu giáo viên tài năng, nhưng không đạt danh hiệu giáo viên duyên dáng là \(15-x\)
Số cô giáo đạt danh hiệu giáo viên duyên dáng, nhưng không đạt danh hiệu giáo viên tài năng là \(20-x\)
Tổng số giáo viên bằng tổng số cô giáo đạt danh hiệu giáo viên tài năng nhưng không đạt danh hiệu giáo viên duyên dáng, số cô giáo đạt danh hiệu giáo viên duyên dáng nhưng không tài năng, số cô giáo đạt cả hai danh hiệu và số cô giáo không đi thi nên ta có phương trình :
\(\left(20-x\right)+\left(15-x\right)+x+5=30\)
\(\Leftrightarrow20-x+15-x+x=25\)
\(\Leftrightarrow x=10\) (TMĐK)
Vậy có 10 cô giáo đạt cả 2 danh hiệu giáo viên tài năng và giáo viên duyên dáng.
(O) và (D) cắt nhau tại A và M \(\Rightarrow AM\perp OD\)
\(\Rightarrow\widehat{AOD}=\widehat{ABN}\) (cùng phụ \(\widehat{BAM}\))
\(\Rightarrow OD||BN\) (góc đồng vị bằng nhau)
\(\Rightarrow OBND\) là hình bình hành (2 cặp cạnh đối song song)
\(\Rightarrow OB=DN\), mà \(\left\{{}\begin{matrix}AB=DC\\OB=\dfrac{1}{2}AB\end{matrix}\right.\) \(\Rightarrow OB=\dfrac{1}{2}CD\Rightarrow DN=\dfrac{1}{2}DC\Rightarrow N\) là trung điểm CD
Mình thấy bạn nói cũng đúng
đúng rồi đó bạn mik cũng thấy thế