Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để ab <a+cb+d thi thì a(b+d)<b(a+c) <=> ab+ad< ab+ bc<=>ad<bc<=> ab <cd
Dê a+cb+d <cd thi (a+c).d<(b+d).c <=> ad+cd<bc+cd<=>ad<bc<=> ab <cd
Làm nhắn gọn hơn thì
1
a/b < c/d
=> ad/bd < cb/db
=> ad < cb
2
ad < cb
=>ad /bd < cb/bd
Chúc pn hc tốt
b)
Để \(\frac{a}{b}>\frac{a+c}{b+d}\) thì \(a.\left(b+d\right)>b.\left(a+c\right)\)
\(\Rightarrow ab+ad>ab+bc\)
\(\Rightarrow ad>bc\)
\(\Rightarrow\frac{a}{b}>\frac{c}{d}\left(đpcm\right).\)
Để \(\frac{a+c}{b+d}>\frac{c}{d}\) thì \(\left(a+c\right).d>\left(b+d\right).c\)
\(\Rightarrow ad+cd>bc+dc\)
\(\Rightarrow ad>bc\)
\(\Rightarrow\frac{a}{b}>\frac{c}{d}\left(đpcm\right).\)
Chúc bạn học tốt!
1.
Nếu \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow\frac{ad}{bd}< \frac{cb}{db}\)
\(\Leftrightarrow ad< cd\left(dpcm\right)\)
2
Nếu \(ad< bc\Leftrightarrow\frac{ad}{bd}< \frac{bc}{bd}\)
\(\Leftrightarrow\frac{a}{b}< \frac{c}{d}\left(dpcm\right)\)
Áp dụng t/c dãy tỉ : a/b = b/c = c/d = (a + b + c)/(b + c + d). suy ra (a/b)^3 = (a+b+c/b+c+d)^3
Vậy (a+b+c/B+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (do rút gọn
Khuyến · 4 năm trước
Theo tính chất của tỉ lệ thức
`a/b=c/d -> a*d=b*c`
Xét các đ/án trên `-> C.`
Ta có a.d=b.c=>a/b=c/d
Adtcdtsbn:a/b=c/d=a-c/b-d=a+c/b+d
(Đpcm)