Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) 76 + 75 - 74
= 74 ( 72 + 7 - 1 )
= 74. 55 chia hết cho 55
b ) 165 + 215
= ( 24 ) 5 + 215
= 220 + 215
= 215 ( 25 + 1 )
= 215 . 33 chia hết cho 33
c ) 817 - 279 - 913
= ( 34 )7 - ( 33 )9 - ( 32 )13
= 328 - 327 - 326
= 326 ( 32 - 3 - 1 )
= 326 . 5
= 322 . 34 . 5
= 322 . 81 . 5
= 322 . 405 chia hết cho 405
a) ta có : \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.\left(49+7-1\right)=7^4.55⋮55\)
\(\Rightarrow7^4.55\) chia hết cho \(55\) \(\Leftrightarrow7^6+7^5-7^4\) chia hết cho \(55\)
vậy \(7^6+7^5-7^4\) chia hết cho \(55\) (đpcm)
b) ta có \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.\left(32+1\right)=2^{15}.33⋮33\)
\(\Rightarrow2^{15}.33\) chia hết cho \(33\) \(\Leftrightarrow16^5+2^{15}\) chia hết cho \(33\)
vậy \(16^5+2^{15}\) chia hết cho \(33\) (đpcm)
c) ta có \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}\)
\(=3^{22}\left(3^6-3^5-3^4\right)=3^{22}\left(729-243-81\right)=3^{22}.405⋮405\)
\(\Rightarrow3^{22}.405\) chia hết cho \(405\) \(\Leftrightarrow81^7-27^9-9^{13}\) chia hết cho \(405\)
vậy \(81^7-27^9-9^{13}\) chia hết cho \(405\) (đpcm)
\(a.\)
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55⋮55\)
\(b.\)
\(16^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33⋮33\)
\(c.\)
Ta có : \(405=3^4.5\)
\(\Rightarrow81^7-27^9-9^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5⋮405\)
Bài 4:
x O y z m n
Giải:
Vì Om là tia phân giác của góc xOz nên:
mOz = 1/2.xOz
Vì On là tia phân giác của góc zOy nên:
zOn = 1/2 . zOy
Ta có: xOz + zOy = 180o ( kề bù )
=> 1/2(xOz + zOy) = 1/2 . 180o
=> 1/2.xOz + 1/2.zOy = 90o
=> mOz + zOn = 90o
=> mOn = 90o (đpcm)
Bài 2:
7^6 + 7^5 - 7^4 = 7^4.( 7^2 + 7 - 1 ) = 7^4 . 55 chia hết cho 55
Vậy 7^6 + 7^5 - 7^4 chia hết cho 55
A = 1 + 5 + 5^2 + ... + 5^50
=> 5A = 5 + 5^2 + 5^3 + ... + 5^51
=> 5A - A = ( 5 + 5^2 + 5^3 + ... + 5^51 ) - ( 1 + 5 + 5^2 + ... + 5^50 )
=> 4A = 5^51 - 1
=> A = ( 5^51 - 1 )/4
Bài 2:
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(5A=5+5^2+...+5^{51}\)
\(\Leftrightarrow4A=5^{51}-1\)
hay \(A=\dfrac{5^{51}-1}{4}\)
Bài 3:
\(S=\left(1^2+2^3+3^3+...+10^2\right)\cdot2=385\cdot2=770\)
a, \(7^6+7^5-7^4=7^4\left[7^2+4-1\right]=7^4\cdot55⋮55\)
b, \(A=1+5+5^2+5^3+...+5^{50}\)
\(\Rightarrow5A=5+5^2+5^3+5^4+...+5^{51}\)
\(\Rightarrow5A-A=\left[5+5^2+5^3+5^4+...+5^{51}\right]-\left[1+5+5^2+5^3+...+5^{50}\right]\)
\(\Rightarrow4A=5^{51}-1\Leftrightarrow A=\frac{5^{51}-1}{4}\)
Câu 1:
A=0,5-|x-4|
Vì -|x-4|\(\le\)0
Suy ra:0,5-|x-4|\(\le\)0,5
Dấu = xảy ra khi x-4=0;x=4
Vậy Max A=0,5 khi x=4
B=1,25+|5-x|
Vì |5-x|\(\ge\)0
Suy ra:1,25+|5-x|\(\ge\)1,25
Dấu = xảy ra khi 5-x=0;x=5
Vậy Min B=1,25 khi x=5
b) 817 - 279 -913 chia hết cho 405
Ta có: 817 - 279 -913 = 328- 327-326
= 326(32-3-1)
= 326. 5 = 322. 405 chia hết cho 405 (đpcm)
a)\(\frac{7}{12}.\frac{6}{11}+\frac{7}{12}.\frac{5}{11}-2\frac{7}{12}\)
\(=\frac{7}{12}.\left(\frac{6}{11}+\frac{5}{11}\right)-\frac{31}{12}\)
\(=\frac{7}{12}-\frac{31}{12}\)
\(=-2\)
b)\(\frac{-5}{9}.\frac{-6}{13}+\frac{5}{-9}.\frac{-5}{13}-\frac{5}{9}\)
\(=\frac{5}{9}.\left(\frac{6}{13}+\frac{5}{13}-1\right)\)
\(=\frac{5}{9}.\left(\frac{11}{13}-\frac{13}{13}\right)\)
\(=\frac{5}{9}.\frac{-2}{13}\)
\(=-\frac{10}{117}\)
c)\(0,8.\frac{-15}{14}-\frac{4}{5}.\frac{13}{14}-1\frac{2}{5}\)
\(=\frac{4}{5}.\frac{-15}{14}-\frac{4}{5}.\frac{13}{14}-\frac{7}{5}\)
\(=\frac{4}{5}.\left(-\frac{15}{14}-\frac{13}{14}\right)-\frac{7}{5}\)
\(=\frac{4}{5}.\left(-2\right)-\frac{7}{5}\)
\(=\frac{-8}{5}-\frac{7}{5}\)
\(=-3\)
d)\(-75\%.\frac{6}{7}+5\%.\frac{6}{7}+\frac{7}{10}.1\frac{1}{7}\)
\(=\frac{-15}{20}.\frac{6}{7}+\frac{1}{20}.\frac{6}{7}+\frac{7}{10}.\frac{8}{7}\)
\(=\frac{6}{7}.\left(\frac{-15}{20}+\frac{1}{20}\right)+\frac{4}{5}\)
\(=\frac{6}{7}.\frac{-7}{10}+\frac{4}{5}\)
\(=-\frac{3}{5}+\frac{4}{5}\)
\(=\frac{1}{5}\)
Linz
a)Ta có: \(VT=7^6+7^5-7^4\)
\(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
Vậy \(7^6+7^5-7^4⋮55\)
b)\(A=1+5+...+5^{100}\)
\(5A=5\left(1+5+...+5^{100}\right)\)
\(5A=5+5^2+...+5^{101}\)
\(5A-A=\left(5+5^2+...+5^{101}\right)-\left(1+5+...+5^{100}\right)\)
\(4A=5^{101}-1\Rightarrow A=\frac{5^{101}-1}{4}\)