K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2019

\(a)M=75.\left(4^{2017}+4^{2016}+...+4^2+4+1\right)+25\)

\(\Rightarrow M=\left(25.3\right).\left(4^{2017}+4^{2016}+...+4^2+4+1\right)+25\)

\(\Rightarrow M=25.\left(4-1\right).\left(4^{2017}+4^{2016}+...+4^2+4+1\right)\)

\(\Rightarrow M=25.\left[4\left(4^{2017}+4^{2016}+...+4^2+4+1\right)-\left(4^{2017}+4^{2016}+...+4^4+4+1\right)\right]+25\)

\(\Rightarrow M=25.\left[\left(4^{2018}+4^{2017}+...+4^2+4+1\right)-\left(4^{2017}+4^{2016}+...+4^2+4+1\right)\right]+25\)

\(\Rightarrow M=25.\left(4^{2018}-1\right)+25\)

\(\Rightarrow M=25.4^{2018}-25+25\)

\(\Rightarrow M=25.4^{2018}=\left(25.4\right).4^{2017}=100.4^{2017}=10^2.4^{2017}⋮10^2\)

\(\text{Vậy }M⋮10^2\left(đpcm\right)\)

\(b)\text{ Đặt }ab=c^2\text{ và }\left(a,\text{ }c\right)=d\left(d\in N^{\circledast}\right)\)

\(-\text{Ta có: }\left\{{}\begin{matrix}a⋮d\\c⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=md\\c=nd\end{matrix}\right.\text{ với }\left(m;n\right)=1\)

\(-\text{Thay vào }ab=c^2\text{, ta được }mdb=\left(nd\right)^2=n^2.d^2\)

\(\Rightarrow mb=n^2.d\)

\(\Rightarrow b⋮n^2,\text{ vì }\left(a;b\right)=1=\left(b;d\right)\)

\(-\text{Mà: }n^2⋮b\text{ nên suy ra }n^2=b\)

\(-\text{Thay vào }ab=c^2,\text{ ta được }a=d^2\)

\(\RightarrowĐpcm\)

10 tháng 3 2020

Ai giúp mik với, thank you

10 tháng 3 2020

THAM KHẢO LICK NÀY NHA :

https://h.vn/hoi-dap/question/783892.html

27 tháng 3 2020

1. Câu hỏi của letienluc - Toán lớp 6 - Học toán với OnlineMath

2 tháng 7 2017

A = 75 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25

A = 25 . 3 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) + 25

A = 25 . [ 4 . ( 41993 + 41992 + ... + 42 + 4 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25

A = 25 . [ ( 41994 + 41993 + ... + 43 + 42 + 1 ) - ( 41993 + 41992 + ... + 42 + 4 + 1 ) ] + 25

A = 25 . ( 41994 - 1 ) + 25

A = 25 . ( 41994 - 1 + 1 )

A = 25 . 41994 

A = 25 . 4 . 41993

A = 100 . 41993 \(⋮\)100

2.

a) gọi 3 số nguyên liên tiếp là a , a + 1 , a + 2 

Theo bài ra : a + ( a + 1 ) + ( a + 2 ) = ( a + a + a ) + ( 1 + 2 ) = 3a + 3 = 3 . ( a + 1 ) \(⋮\)3

b) gọi 5 số nguyên liên tiếp là b, b + 1 , b + 2 , b + 3 , b + 4 

Theo bài ra : b + ( b + 1 ) + ( b + 2 ) + ( b + 3 ) + ( b + 4 ) 

= ( b + b + b + b + b ) + ( 1 + 2 + 3 + 4 )

= 5b + 10

= 5 . ( b + 2 ) \(⋮\)5

3.

Ta có : \(\frac{10^{94}+2}{3}=\frac{10...0+2}{3}=\frac{100...002}{3}\text{ }⋮\text{ }3\)là số nguyên

\(\frac{10^{94}+8}{9}=\frac{100...00+8}{9}=\frac{100...008}{9}\text{ }⋮\text{ }9\)là số nguyên

17 tháng 4 2017

Chắc đặt nhầm lớp rồi

Ta có :\(B=4^{2004}+4^{2003}+...+4^2+4+1\)

\(4B=\left(4^{2004}+4^{2003}+...+4^2+4+1\right).4\)

\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)

\(4B-B=\left(4^{2005}+4^{2004}+...+4^3+4^2+4\right)\)\(-\left(4^{2004}+4^{2003}+...+4+1\right)\)

\(3B=\left(4^{2005}-1\right)\)\(\Rightarrow\frac{4^{2005}-1}{3}\)

\(\Rightarrow A=75.\frac{4^{2005}-1}{3}+25\)

\(\Rightarrow A=25.\left(4^{2005}-1\right)+25\)

\(\Rightarrow A=25.\left(4^{2005}-1+1\right)\)

\(\Rightarrow A=25.4.4^{2004}\)

\(\Rightarrow A=100.4^{2004}\)

Mà 100 chia hết 100 nên \(100.4^{2004}\) chia hết cho 100

17 tháng 4 2017

B=4^0 + 4^1 +...+ 4^2004

4B=4^1+4^2+...+4^2005

3B=4^2004-4^0

B=(4^2004-4^0):3

Thay B vào  ta có :

A=75.(4^2004-4^0):3+25

A=25.(4^2004-4^0)+25

A=25.4^2004

A=100.4^2003

Vậy A chia hết cho 100