K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2016

bài này hay nhỉ

 

Ta có: A > 0 (Vì A gồm các phân số dương)

Ta lại có:

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}_{ }+\frac{1}{2015.2016}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A< 1-\frac{1}{2016}< 1\)

\(\Rightarrow A< 1\)

Vì \(0< A< 1\) nên A không phải là số tự nhiên (đpcm)

9 tháng 5 2016

ta thấy 1/2^2;...;1/2016^2 >0=> A>0

lại thấy 1/2^2<1/1.2 ;.....;1/2016^2 < 1/2015.2016

=> A<1

=> 0<A<1 => Ako là stn

 

9 tháng 5 2016

Ta thấy A = 1/2^2 + 1/3^2 + 1/4^2+...+ 1/2016^2

=> A < 1/(1.2) + 1/(2.3) + 1/(3.4) +....+ 1/(2015.2016)

=> A < 1-1/2+1/2-1/3+1/3-1/4+...+1/2015-1/2016

=> A < 1 - 1/2016 < 1

Mặt khác :1/2^2 > 0

1/3^2 > 0 

1/4^2 > 0

..........

1/2016^2 > 0

=> A > 0

=> 0<A<1

=> A ko phải số tự nhiên

Vậy a ko phải số tự nhiên

15 tháng 5 2016

chứng minh 1<A<2 là đc

15 tháng 5 2016

giải hẳn ra đi bạn

9 tháng 8 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)

\(A< 1-\frac{1}{2016}\)

\(A< \frac{2015}{2016}\left(đpcm\right)\)

\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}\)

\(\Rightarrow A< \frac{2015}{2016}\)