Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c/ ĐKXĐ: \(x\ge3\)
\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x-3}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\left(\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}\right)-\left(\sqrt{\left(x-1\right)\left(x+3\right)}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}-\sqrt{x+3}=0\\\sqrt{x-1}-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=\sqrt{x+3}\\\sqrt{x-1}=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\left(vn\right)\\x=2< 3\left(ktm\right)\end{matrix}\right.\)
Vậy pt đã cho vô nghiệm
Bài 1
Từ giả thiết, bình phương 2 vế, ta được:
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)
\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)
\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)
\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)
\(=2014\)
\(\Rightarrow A=\sqrt{2014}.\)
Bài 2:
Đặt \(\sqrt{2015}=a>0\)
\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)
Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)
\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)
\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)
Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)
Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)
Bài 3
Áp dụng bất đẳng thức Côsi
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)
Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)
Mình có thể giúp bạn bài 2 như sau, thủ thuật vô cùng đơn giản :
Ta có : 20162-20152 = (2016-2015).(2015+2016) = 2015+2016. Tương tự với các số khác, ta có :
A = 2016+2015+2014+2013+...+2+1 = 2016.2017:2=2033136
ok ?
Ta có\(x\sqrt{\frac{\left(2015+y^2\right)\left(2015+z^2\right)}{2015+x^2}}=x\sqrt{\frac{\left(xy+yz+zx+y^2\right)\left(xy+yz+zx+z^2\right)}{xy+yz+zx+x^2}}\)
\(=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=xy+xz\)
Tương tự:\(y\sqrt{\frac{\left(2015+x^2\right)\left(2015+z^2\right)}{2015+y^2}}=yx+yz\)
\(z\sqrt{\frac{\left(2015+x^2\right)\left(2015+y^2\right)}{2015+z^2}}=zx+zy\)
Ta có :\(P=xy+xz+yx+yz+zx+zy=2\left(xy+yz+zx\right)=4030\)
=>P không phải là số chính phương
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
b) đk: \(x>2012;y>2013\)
pt \(\frac{16}{\sqrt{x-2012}}+\sqrt{x-2012}+\frac{1}{\sqrt{y-2013}}+\sqrt{y-2013}=10\)
\(VT\ge2\sqrt{\frac{16}{\sqrt{x-2012}}.\sqrt{x-2012}}+2\sqrt{\frac{1}{\sqrt{y-2013}}.\sqrt{y-2013}}=8+2=10\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-2012=16\\y-2013=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2028\\y=2014\end{cases}}\)
b. ĐK \(\hept{\begin{cases}x-2\ge0\\y+2014\ge0\\z-2015\ge o\end{cases}\Rightarrow\hept{\begin{cases}x\ge2\\y\ge-2014\\z\ge2015\end{cases}}}\)
Ta có \(\sqrt{x-2}+\sqrt{y+2014}+\sqrt{z-2015}=\frac{1}{2}\left(x+y+z\right)\)
Đặt \(\hept{\begin{cases}\sqrt{x-2}=a\ge0\\\sqrt{y+2014}=b\ge0\\\sqrt{z-2015}=c\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x-2=a^2\\y+2014=b^2\\z-2015=c^2\end{cases}\Rightarrow x+y+z}=a^2+b^2+c^2+3\)
Pt \(\Leftrightarrow a+b+c=\frac{1}{2}\left(a^2+b^2+c^2+3\right)\Leftrightarrow a^2+b^2+c^2+3=2a+2b+2c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\Leftrightarrow\hept{\begin{cases}a-1=0\\b-1=0\\c-1=0\end{cases}}\)\(\Leftrightarrow a=b=c=1\)
\(\Rightarrow\hept{\begin{cases}x-2=1\\y+2014=1\\z-2015=1\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2013\\z=2016\end{cases}\left(tm\right)}}\)
Vậy \(x=3;y=-2013;z=2016\)