K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 9 2018

a) Áp dụng bất đẳng thức:
 \(a^2+b^2+c^2\ge ab+ac+bc\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Ta có: \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+c^2a^2\)
Tiếp tục áp dụng ta có: \(a^2b^2+b^2c^2+c^2a^2\ge ab^2c+abc^2+a^2bc=abc\left(a+b+c\right)\)
\(\Rightarrow a^4+b^4+c^4\ge abc\) do \(a+b+c=1\)
Ta có đpcm
Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
b) Từ câu a đã chứng minh bên trên, phương trình \(x^4+y^4+z^4=xyz\)có nghiệm \(\Leftrightarrow x=y=z\)
Từ đó ta có hệ phương trình:
\(\hept{\begin{cases}x=y=z\\x+y+z=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=\frac{1}{3}\\z=\frac{1}{3}\end{cases}}}\)
Chúc bạn buổi tối vui vẻ ^^
 

19 tháng 12 2016

0.4;0.5;0.1

3 tháng 1 2017

Bài 2. a/ \(1\le a,b,c\le3\)  \(\Rightarrow\left(a-1\right).\left(a-3\right)\le0\) , \(\left(b-1\right)\left(b-3\right)\le0\)\(\left(c-1\right).\left(c-3\right)\le0\)

Cộng theo vế : \(a^2+b^2+c^2\le4a+4b+4c-9\)

\(\Rightarrow a+b+c\ge\frac{a^2+b^2+c^2+9}{4}=7\)

Vậy min E = 7 tại chẳng hạn, x = y = 3, z = 1

b/ Ta có : \(x+2y+z=\left(x+y\right)+\left(y+z\right)\ge2\sqrt{\left(x+y\right)\left(y+z\right)}\) 

Tương tự : \(y+2z+x\ge2\sqrt{\left(y+z\right)\left(z+x\right)}\) , \(z+2y+x\ge2\sqrt{\left(z+y\right)\left(y+x\right)}\)

Nhân theo vế : \(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge8\left(x+y\right)\left(y+z\right)\left(z+x\right)\) hay

\(\left(x+2y+z\right)\left(y+2z+x\right)\left(z+2y+x\right)\ge64\)

2 tháng 1 2017

chẵng biết

1 tháng 3 2020

Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)

khi đó:

\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)

\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)

Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Dấu "=" xảy ra <=> a = b = c = 1

Vậy max P = 3 tại a = b = c =1.

1 tháng 3 2020

Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-

Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra

\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:

\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)

Đây là bất đẳng thức Schur bậc 3, ta có đpcm.

17 tháng 7 2017

bài 1 câu b dẽ nhất

x^2 =y^4 +8
x^2 -y^4 =8
x^2 -(y^2)^2 =8
hiệu hai số cp =8

=> x =+-3 và y =+-1

18 tháng 7 2017

1c ẩn phụ x+y=a,xy=b (a^2 >/ 4b) giải nghiệm nguyên bth

NV
14 tháng 10 2019

Ta có BĐT: \(x^4+y^4\ge xy\left(x^2+y^2\right)\)

Dễ dàng chứng minh bằng biến đổi tương đương (bạn tự làm, 3 dòng thôi :D)

\(\Rightarrow P=\sum\frac{a}{a.abc+b^4+c^4}\le\sum\frac{a}{a^2bc+bc\left(b^2+c^2\right)}=\sum\frac{a}{bc\left(a^2+b^2+c^2\right)}=\sum\frac{a^2}{a^2+b^2+c^2}=1\)

\(\Rightarrow P_{max}=1\) khi \(a=b=c=1\)

1 tháng 8 2017

 Ngọc Anh Dũngo0oNguyễno0oHuy hoàng indonaca0o0 khùng mà 0o0Tình bạn vĩnh cửu Phương DungHacker Mũ Trắng

1 tháng 8 2017

Cái đề là  \(\frac{a}{b^2}+\frac{b}{c^2}+\frac{c}{a^2}\ge\frac{b^2}{a}+\frac{c^2}{b}+\frac{a^2}{c}???\)