Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)=\left(1+\frac{a+b+c}{a}\right)\left(1+\frac{a+b+c}{b}\right)\left(1+\frac{a+b+c}{c}\right)\)
\(=\left(\frac{2a+b+c}{a}\right)\left(\frac{2b+a+c}{b}\right)\left(\frac{2c+a+b}{c}\right)\)
\(=\left(\frac{a+b}{a}+\frac{a+c}{a}\right)\left(\frac{a+b}{b}+\frac{b+c}{b}\right)\left(\frac{a+c}{c}+\frac{b+c}{c}\right)\)
Áp dụng BĐT Cô-si,ta có :
\(\frac{a+b}{a}+\frac{a+c}{a}\ge2\sqrt{\frac{\left(a+b\right)\left(a+c\right)}{a^2}}\)
\(\frac{a+b}{b}+\frac{b+c}{b}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{b^2}}\)
\(\frac{a+c}{c}+\frac{b+c}{c}\ge2\sqrt{\frac{\left(a+c\right)\left(b+c\right)}{c^2}}\)
\(\Rightarrow\left(\frac{a+b}{a}+\frac{a+c}{a}\right)\left(\frac{a+b}{b}+\frac{b+c}{b}\right)\left(\frac{a+c}{c}+\frac{b+c}{c}\right)\ge8\sqrt{\frac{\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2}{a^2b^2c^2}}\)
\(\ge8\sqrt{\frac{\left[8\sqrt{a^2b^2c^2}\right]^2}{a^2b^2c^2}}=8\sqrt{64}=64\)
Dấu "=" xảy ra khi a = b = c = \(\frac{1}{3}\)
{1+a}{1+b}+{1+b}{1+c}+{1+c}{1+a}
=1+a+b+ab+1+b+c+bc +1+c+a+ca
=1+1+1+{a+b+c}+{a+b+c} +ab+bc+ca
=5+ab+bc+ca
vìab+bc+ca >0 =>5+ab+bc+ca >5
lik-e cho minh nha