K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2016

Ta có 

\(\sqrt[3]{3a3b}\le\frac{3a+3b+1}{3}\)

\(\sqrt[3]{3b3c}\le\frac{3b+3c+1}{3}\)

\(\sqrt[3]{3a3c}\le\frac{3a+3c+1}{3}\)

Cộng vế theo vế ta được

\(\sqrt[3]{9}\left(\sqrt[3]{ab}+\sqrt[3]{bc}+\sqrt[3]{ac}\right)\le2\left(a+b+c\right)+1\)

<=> \(\sqrt[3]{ab}+\sqrt[3]{bc}+\sqrt[3]{ac}\le\sqrt[3]{3}\)

20 tháng 10 2017

nhầm mọi người ơi chứng minh cho mình <=\(\dfrac{3}{\sqrt{2}}\)

26 tháng 12 2017

https://goo.gl/BjYiDy

21 tháng 5 2020

Ta có: \(ab+bc+ca+abc=4\)

\(\Leftrightarrow abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8\)\(=12+\left(ab+bc+ca\right)+4\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+2\right)\left(b+2\right)\left(c+2\right)\)\(=\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)\)

\(\Leftrightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\Leftrightarrow\frac{2}{a+2}+\frac{2}{b+2}+\frac{2}{c+2}=2\)

\(\Leftrightarrow3-\left(\frac{2}{a+2}+\frac{2}{b+2}+\frac{2}{c+2}\right)=1\)\(\Leftrightarrow\frac{a}{a+2}+\frac{b}{b+2}+\frac{c}{c+2}=1\)

Đặt \(x=\frac{a}{a+2};y=\frac{b}{b+2};z=\frac{c}{c+2}\). Khi đó x + y + z = 1 và \(\frac{1}{x}=\frac{a+2}{a}=1+\frac{2}{a}\)

\(\Rightarrow\frac{2}{a}=\frac{1}{x}-1=\frac{1-x}{x}=\frac{y+z}{x}\Rightarrow a=\frac{2x}{y+z}\)

Hoàn toàn tương tự, ta có: \(b=\frac{2y}{z+x};c=\frac{2z}{x+y}\)

Lúc đó bất đẳng thức cần chứng minh trở thành:

\(\sqrt{\frac{2x}{y+z}.\frac{2y}{z+x}}+\sqrt{\frac{2y}{z+x}.\frac{2z}{x+y}}+\sqrt{\frac{2z}{x+y}.\frac{2x}{y+z}}\le3\)

\(\Leftrightarrow2\sqrt{\frac{x}{y+z}.\frac{y}{z+x}}+2\sqrt{\frac{y}{z+x}.\frac{z}{x+y}}+2\sqrt{\frac{z}{x+y}.\frac{x}{y+z}}\le3\)

Theo BĐT AM - GM, ta có: \(2\sqrt{\frac{x}{y+z}.\frac{y}{z+x}}\le\frac{y}{y+z}+\frac{x}{z+x}\)(1)

Tương tự: \(2\sqrt{\frac{y}{z+x}.\frac{z}{x+y}}\le\frac{z}{z+x}+\frac{y}{x+y}\)(2) ;\(2\sqrt{\frac{z}{x+y}.\frac{x}{y+z}}\le\frac{x}{x+y}+\frac{z}{y+z}\)(3)

Cộng theo vế của (1), (2), (3), ta được: \(2\sqrt{\frac{x}{y+z}.\frac{y}{z+x}}+2\sqrt{\frac{y}{z+x}.\frac{z}{x+y}}+2\sqrt{\frac{z}{x+y}.\frac{x}{y+z}}\)\(\le\left(\frac{x}{x+y}+\frac{y}{x+y}\right)+\left(\frac{y}{y+z}+\frac{z}{y+z}\right)+\left(\frac{z}{z+x}+\frac{x}{z+x}\right)=3\)

Vậy bài toán được chứng minh

Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)hay a = b = c = 1.

21 tháng 5 2020

Đặt \(a=\frac{1}{x},\text{ }b=\frac{1}{y},\text{ }c=\frac{1}{z}\Rightarrow x+y+z+1=4xyz\Leftrightarrow r=\frac{p+1}{4}\)

Cần chứng minh: \(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\le3\)

\(\Leftrightarrow\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\sqrt{xyz}\)

\(\Leftrightarrow x+y+z+2\Sigma\sqrt{xy}\le9xyz\)

\(\Leftrightarrow4\left(p+2\Sigma\sqrt{xy}\right)\le9\left(p+1\right)\)

\(\Leftrightarrow8\Sigma\sqrt{xy}\le5p+9\) (1)

Ta có: \(t^2+u^2+v^2+2tuv+1\ge2\left(tu+uv+tv\right)\) (quen thuộc, trên mạng chắc có)

Vì vậy: \(x+y+z+2\sqrt{xyz}+1\ge2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\) 

Hay là: \(4\left(p+2\sqrt{xyz}+1\right)\ge8\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\) (2)

Từ (1) và (2) ta chứng minh: \(4\left(p+2\sqrt{r}+1\right)\le5p+9\)

\(\Leftrightarrow4p+4\sqrt{\left(p+1\right)}+4\le5p+9\)

\(\Leftrightarrow\left(p-3\right)^2\ge0\). Xong.