Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11
b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11
abcdeg = ab . 10000 + cd .100+ eg
= ab . 9999 + 1 . ab + cd . 99 + cd + eg
= ab . 11 . 909 + cd . 11 .9 + (ab + cd + eg)
= 11 . (ab + 909 + cd . 9 ) + (ab + cd + eg)
Vì 11 . (ab . 909 + cd . 9) chia hết cho 11
ab + cd + eg chia hết cho 11
nên abcdeg chia hết cho 11
Vậy nếu ab + cd + eg chia hết cho 11 thì abcdeg chia hết cho 11
Ta có
abcdeg = ab.10000+cd.100+eg
=9999.ab+ab+99.cd+cd+eg
=(9999.ab+99.cd)+(ab+cd+eg)
Vì 9999.ab+99.cd chia hết cho 11, ab+cd+eg chia hết cho 11vậy ababcdeg chia hết cho 11
Ta có \(\left(ab+cd+eg\right)⋮11\)
Suy ra \(ab⋮11\)và \(cd⋮11\)và \(eg⋮11\)
Suy ra \(abcdeg⋮11\)
1.
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
2.
abcdeg = abc.1000+deg = abc.994 +abc.6 +deg
= abc.994 + abc.6 - 6deg +7deg =abc.994 + 6.(abc - deg) +7deg
Vì abc.994=abc.7.142 chia hết cho 7
abc - deg chia hết cho 7 =>6.(abc - deg ) chia hết cho 7
7.deg chia hết cho 7
Từ 3 ý trên =>abc.994 +6.(abc - deg) + 7deg chia cho 7
vậy abcdeg chia hết cho 7
Ta có : abcdeg = 10000 . ab + 100 . cd + eg . 1
= 9999 . ab + 99 . cd + ab + cd + eg
= ( 9999 . ab + 99 . cd ) + ( ab + cd + eg )
+) 9999 . ab + 99 . cd chia hết cho 11 vì :
Ta xét chữ số tận cùng 9999 và 99 là chữ số 9 còn số 11 có chữ số 1
Ta lấy : 9 : 1 = 9 từ điều đó suy ra 9999 . ab + 99 . cd chia hết cho 11
+) ab + cd + eg cũng chia hết cho 11
Vậy abcdeg chia hết cho 11
Ta có : abcdeg=10000.ab +100.cd+eg
=9999.ab+ab+99.cd+eg
=(9999.ab+99.cd)+(ab+cd+eg)
Vì 9999.ab chia hết cho 11 ; 99.cd chia hết cho 11 => 9999.ab+99.cd chia hết cho 11
Mà ab+cd+eg chia hết cho 11
=>(9999.ab+99.cd)+(ab+cd+eg) chia hết cho 11
hay abcdeg chia hết cho 11
Vậy abcdeg chia hết cho 11
abcdeg + ab + cd + eg = 123558
a.100000 + b.10000 + c.1000 + d.100 + e.10 + g + a.10 + b + c.10 + d + e.10 + g = 123558
a.100010 + b.10001 + c.1010 + d.101 + e.20 + g.2 = 123558
=> a chỉ bằng 1 vì 1.100010 khoảng với 123558,nếu a = 2 thì 2 . 100010 > 123558
b.10001 + c.1010 + d.101 + e.20 + g.2 = 23548
đến đây bạn có thể suy luận như thế là ra liền
cảm ơn bạn nha
\