Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
\(\Leftrightarrow\left(\frac{1}{4}a^2-ab+b^2\right)+\left(\frac{1}{4}a^2-ac+c^2\right)+\left(\frac{1}{4}a^2-ad+d^2\right)+\frac{1}{4}a^2\ge0\)
\(\Leftrightarrow\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
Do bất đẳng thức cuối cùng đúng với mọi a, b, c, d thuộc R nên bất đẳng thức ban đầu đúng với mọi số thực a, b, c, d.
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d;\text{ }a=0\Leftrightarrow a=b=c=d=0\)
Ta có: \(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
<=> \(4a^2+4b^2+4c^2+4d^2\ge4ab+4ac+4ad\)
<=> \(\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\left(a^2-4ad+4d^2\right)+a^2\ge0\)
<=> \(\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+a^2\ge0\)luôn đúng
Vậy \(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\) đúng
Dấu "=" xảy ra <=> a = 0; a - 2b = 0; a - 2c = 0; a - 2d = 0 <=> a = b = c = d = 0
tuong tự [Toán 11] Tính giá trị của biểu thức | HOCMAI Forum - Cộng đồng học sinh Việt Nam
Phản chứng rằng tất cả đều đúng. Tích các bất đẳng thức lại cho ta
\(a\left(1-a\right)b\left(1-b\right)c\left(1-c\right)d\left(1-d\right)>\frac{1}{2}\times\frac{2}{3}\times\frac{1}{8}\times\frac{3}{32}=\frac{1}{256}.\)
Mặt khác, ta có \(\left(a-\frac{1}{2}\right)^2\ge0\to a\left(1-a\right)\le\frac{1}{4}.\) Tương tự \(b\left(1-b\right),c\left(1-c\right),d\left(1-d\right)\le\frac{1}{4}\to\)
\(a\left(1-a\right)b\left(1-b\right)c\left(1-c\right)d\left(1-d\right)<\)\(\left(\frac{1}{4}\right)^4=\frac{1}{256},\) mâu thuẫn.
Đề bài đúng mà bạn..có sai đâu...mình tính vẫn ra được kết quả cuối cùng
có dư số 1 ko bạn