Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\dfrac{3^{10}.11+3^{10}.5}{3^9.2^4}=\dfrac{3^{10}.\left(11+5\right)}{3^9.2^4}\)
\(=\dfrac{3^{10}.2^4}{3^9.2^4}=3\)
b, \(B=\dfrac{2^{10}.13+2^{10}.65}{2^8.104}=\dfrac{2^{10}.78}{2^8.104}\)
\(=\dfrac{2^2.3}{4}=3\)
c, \(C=\dfrac{4^9.36+64^4}{16^4.100}=\dfrac{\left(2^2\right)^9.36+\left(2^6\right)^4}{\left(2^4\right)^4.100}\)
\(=\dfrac{2^{18}.36+2^{24}}{2^{16}.100}=\dfrac{2^{18}.\left(36+2^6\right)}{2^{16}.100}\)
\(=\dfrac{2^4.100}{100}=2^4=16\)
Câu d làm tương tự! Chúc bạn học tốt!!!
a: \(A=25+125=150\)
b: \(B=16+64=80\)
c: \(C=32+9+1=33+9=42\)
d: \(D=1+8+27=35+1=36\)
g: \(K=11\cdot3^{29}-\dfrac{3^{30}}{4\cdot3^{28}}=11\cdot3^{29}-\dfrac{9}{4}\)
1.
a. Ta có: \(A=2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(B=3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Mà \(8^{100}< 9^{100}\)
\(\Rightarrow A< B\)
b. Ta có: \(A=2^{332}< 2^{333}=2^{3.111}=\left(2^3\right)^{111}=8^{111}\)
\(B=3^{223}>3^{222}=3^{2.111}=\left(3^2\right)^{111}=9^{111}\)
Mà \(8^{111}< 9^{111}\)
\(\Rightarrow A< B\)
c. Ta có: \(A=2^{91}=2^{13.7}=\left(2^{13}\right)^7=8192^7\)
\(B=5^{35}=5^{5.7}=\left(5^5\right)^7=3125^7\)
Mà \(8192^7>3125^7\)
\(\Rightarrow A>B\)
Câu 2:
a: =>(x-6)(x-7)=0
=>x=6 hoặc x=7
b: =>\(x^8\left(x^2-25\right)=0\)
\(\Leftrightarrow x^8\left(x-5\right)\left(x+5\right)=0\)
hay \(x\in\left\{0;5;-5\right\}\)
a)A=1+2+22+...+2100
=>2A=2+22+23+...2101
=>2A-A=(2+22+23+...+2101)-(1+2+22+...+2100)
=>A=2101-1
b)B=3+32+33+...+3100
=>3B=32+33+...+3101
=>3B-B=(32+33+...+3101)-(3+32+...3100)
=>2B-B=3101-3
=>B=(3101-3):2
c)C=1+2+4+8+16+...+8192
=>C=1+2+22+23+...213
=>2C=2+22+23+...+214
=>2C-C=(2+22+...+214)-(2+22+...+213)
=>C=214-2
d)D=4+42+43+...+4n
=>4D=42+43+...+4n+1
=>4D-D=(42+43+...+4n+1)-(4+42+...+4n)
=>3D=4n+1-4
=>D=(4n+1-4):3
A = 23 . 19 - 23 . 14 + 12018
= 23.(19 - 14) + 1
= 8 . 5 + 1
= 40 + 1 = 41
B = 102 - [60 : (56 : 54 - 3. 5)]
= 100 - [60 : (10 - 15)]
= 100 - [60 : (-5)]
= 100 + 12
= 112
a) \(\frac{2^3}{2^4}=\frac{2^3}{2^3.2}=\frac{1}{2}\)
b) \(\frac{3^5}{3^4}=\frac{3^4.3}{3^4}=3\)
c) \(\frac{4^7}{4^{10}}=\frac{4^7}{4^7.4^3}=\frac{1}{4^3}=\frac{1}{64}\)
d) \(\frac{5^{11}}{5^8}=\frac{5^8.5^3}{5^8}=5^3=125\)
e) \(\frac{6^2}{4^2}=\frac{2^2.3^2}{\left(2^2\right)^2}=\frac{3^2}{2^2}=\frac{9}{4}\)
a) \(\frac{2^3}{2^4}\)= \(\frac{8}{16}\)= \(\frac{1}{2}\)
b) \(\frac{3^5}{3^4}\)= \(\frac{243}{81}\)= \(\frac{3}{1}\)= 3
a)2A=4+4^2+4^3+...+4^101
2A-A=4^101-1
A=4^101-1
khong bit phai hoi muon gioi phai hoc
Lời giải:
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{4^2-10}{2}=3$
$a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)$
$=(a+b+c)^3-3[(ab+bc+ac)(a+b+c)-abc]$
$\Rightarrow 22=4^3-3(3.4-abc)$
$\Rightarrow abc=-2$
$a^4+b^4+c^4=(a^2+b^2+c^2)^2-2(a^2b^2+b^2c^2+c^2a^2)$
$=10^2-2[(ab+bc+ac)^2-2abc(a+b+c)]$
$=100-2[3^2-2(-2).4]=50$