Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1=a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
\(\Rightarrow2P=2a^2+2b^2+2c^2=\frac{2}{a+b+c}+2ab+2bc+2ca\)
\(\Rightarrow3P=3a^2+3b^2+3c^2=\frac{2}{a+b+c}+a^2+b^2+c^2+2ab+2bc+2ca\)
\(=\frac{1}{a+b+c}+\frac{1}{a+b+c}+\left(a+b+c\right)^2\ge3\sqrt[3]{\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}}=3\)
\(\Rightarrow P\ge1\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và các hoán vị.
xí câu 1:))
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(1)
Đặt a = x + y - 2 => a > 0 ( vì x,y > 1 )
Khi đó \(\left(1\right)=\frac{\left(a+2\right)^2}{a}=\frac{a^2+4a+4}{a}=\left(a+\frac{4}{a}\right)+4\ge2\sqrt{a\cdot\frac{4}{a}}+4=8\)( AM-GM )
Vậy ta có đpcm
Đẳng thức xảy ra <=> a=2 => x=y=2
B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)
TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)
\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)
\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)
\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)
Xem đây là một phương trình bậc hai ẩn a, tham số b.
Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)
\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)
\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)
Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)
(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)
TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là
\(-\frac{4}{3}\le a,b,c\le0\)
Kết hợp 2 trường hợp lại, ta có đpcm.
\(S=\frac{\sqrt{a-2}}{a}+\frac{\sqrt{b-6}}{b}+\frac{\sqrt{c-12}}{c}=\frac{\sqrt{2\left(a-2\right)}}{\sqrt{2}a}+\frac{\sqrt{6\left(b-6\right)}}{\sqrt{6}b}+\frac{\sqrt{12\left(c-12\right)}}{\sqrt{12}c}\)
\(\le\frac{\frac{2+a-2}{2}}{\sqrt{2}a}+\frac{\frac{6+b-6}{2}}{\sqrt{6}b}+\frac{\frac{12+c-12}{2}}{\sqrt{12}c}=\frac{a}{2\sqrt{2}a}+\frac{b}{2\sqrt{6}b}+\frac{c}{2\sqrt{12c}}\)(AM-GM)
\(=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{6}}+\frac{1}{2\sqrt{12}}\)
Dấu "=" xảy ra \(\Leftrightarrow a=4;b=12;c=24\)
Cho a, b, c > 0; a+b+c=3. Chứng minh
[(a+1):(b2+1)]+[(b+1):(c2+1)]+[(c+1):(a2+1)] lớn hơn hoặc bằng 3
\(VT=\Sigma_{cyc}\frac{a+1}{b^2+1}=\Sigma_{cyc}\left(\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\right)\)
\(=\left(a+b+c+3\right)-\Sigma_{cyc}\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge6-\Sigma_{cyc}\frac{b\left(a+1\right)}{2}=6-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge6-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi a = b =c = 1
Is that true?
min(!;1;1)
max (0;0;3)
Do vai trò của a, b, c là bình đẳng nên ta có thể giả sử \(a\ge b\ge c\)
*Tìm Min:
Cách 1:
Theo nguyên lí Dirichlet trong 3 số a -1; b-1; c-1 tồn tại ít nhất 2 số mà tích chúng không âm. Giả sử\(\left(a-1\right)\left(b-1\right)\ge0\Rightarrow abc\ge ca+bc-c\)
Từ đó \(P\ge a^2+b^2+c^2+ca+bc-c=a^2+b^2+c\left(a+b+c-1\right)\)
\(=\left(a^2+1\right)+\left(b^2+1\right)+2c-2\ge2\left(a+b+c\right)-2=4\)
Đẳng thức xảy ra khi \(a=b=c=1\)
*Tìm max:
\(P\le a^2+b^2+c^2+6abc\)
Ta sẽ chứng minh: \(a^2+b^2+c^2+6abc\le9=\left(a+b+c\right)^2\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2\right)+18abc\le\left(a+b+c\right)^3\)
\(VP-VP=2\left[a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\right]\ge0\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(0;0;3\right)\) và các hoán vị.
Bỏ 2 dòng đầu đi nha, nháp thôi á!