Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a*b=72 suy ra a=9;b=8
nên (9+3)*8= 72
đúng 1000000000000000000000000000000000000000000000000000000000%
Bổ đề \(xy\le\frac{\left(x+y\right)^2}{4}\left(\forall x,y\inℝ\right)\)
Ta có \(Q=1-\frac{2ab}{a^2+ab+b^2}\)
do \(a^2+ab+b^2=\left(a+b\right)^2-ab\ge\frac{3}{4}\left(a+b\right)^2\)
Nên \(\frac{2ab}{a^2+ab+b^2}\le\frac{2ab}{\frac{3}{4}\left(a+b\right)^2}\le\frac{\frac{\left(a+b\right)^2}{2}}{\frac{3}{4}\left(a+b\right)^2}=\frac{2}{3}\)
=> \(Q\ge\frac{1}{3}\)
dấu "=" xảy ra khi zà chỉ khi a=b
Ta có: a: b: c: d = 2: 3 : 4: 5 và a + b + c + d = -42
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
Ta có :
\(\frac{a}{2}=-3\Rightarrow a=-6\)
\(\frac{b}{3}=-3\Rightarrow b=-9\)
\(\frac{c}{4}=-3\Rightarrow c=-12\)
\(\frac{d}{5}=-3\Rightarrow d=-15\)
Ta có: a : b : c : d = 2 : 3 : 4 : 5 => \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=-\frac{42}{14}=-3\)
=> \(\frac{a}{2}=-3\) => a = -3.2 = -6
=> \(\frac{b}{3}=-3\) => b = -3.3 = -9
=> \(\frac{c}{4}=-3\) => c = -3.4 = -12
=> \(\frac{d}{5}=-3\) => d = -3. 5 = -15
Vậy ...
abc = a x 11 + b x 11 + c x 11
a x 100 + b x 10 + c = a x 11 + b x 11 + c x 11
Ta chuyển vế
a x 89 = b x 1 + c x 10
a x 89 = cb
=> a = 1 ; cb = 89
=> a = 1 ; c = 8 ; b = 9
a+b=a–b
=> (a+b)–(a–b)=0
=> a+b–a+b=0
=>2b=0
=>b=0
Thay vào biểu thức ta có:a+0=a–0
=>a=a(luôn đúng)
Vậy b=0 và a tùy ý.
b=0 và a là số nào cũng dc
Vì a là số nào + hoặc - 0đều bằng a
hok tốt