K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

đơn vị của a và b là j

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Bài 1

Đặt \(A=a^3+b^3+c^3-3(a-1)(b-1)(c-1)\)

Biến đổi:

\(A=a^3+b^3+c^3-3[abc-(ab+bc+ac)+a+b+c-1]=a^3+b^3+c^3-3abc+3(ab+bc+ac)-6\)

\(A=(a+b+c)^3-3[(a+b)(b+c)(c+a)+abc]-6+3(ab+bc+ac)\)

\(A=21-3(a+b+c)(ab+bc+ac)+3(ab+bc+ac)=21-6(ab+bc+ac)\)

Áp dụng BĐT Am-Gm:

\(3(ab+bc+ac)\leq (a+b+c)^2=9\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\geq 21-6.3=3\). Dấu bằng xảy ra khi $a=b=c=1$

\(0\leq a,b,c\leq2\Rightarrow (a-2)(b-2)(c-2)\leq 0\)

\(\Leftrightarrow abc-2(ab+bc+ac)+4\leq 0\Leftrightarrow 2(ab+bc+ac)\geq 4+abc\geq 0\Rightarrow ab+bc+ac\geq 2\)

\(\Rightarrow A\leq 21-6.2=9\). Dấu bằng xảy ra khi $(a,b,c)=(0,1,2)$ và các hoán vị.

AH
Akai Haruma
Giáo viên
1 tháng 2 2017

Bài 2a)

Ta có

\(A=a^2+b^2+c^2=(a+1)^2+(b+1)^2+(c+1)^2-3-2(a+b+c)\)

\(\Leftrightarrow A=(a+b+c+3)^2-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]-3\)

\(\Leftrightarrow A=6-2[(a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)]\)

\(-1\leq a,b,c\leq 2\Rightarrow a+1,b+1,c+1\geq 0\)

\(\Rightarrow (a+1)(b+1)+(b+1)(c+1)+(c+1)(a+1)\geq 0\Rightarrow A\leq 6\)

Dấu bằng xảy ra khi \((a,b,c)=(-1,-1,2)\) và các hoán vị của nó

Bài 1: 
Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{3a+b}=\dfrac{bk}{3bk+b}=\dfrac{k}{3k+1}\)

\(\dfrac{c}{3c+d}=\dfrac{dk}{3dk+d}=\dfrac{k}{3k+1}\)

Do đó: \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

c: \(\dfrac{2a+3b}{2a-3b}=\dfrac{2\cdot bk+3b}{2\cdot bk-3b}=\dfrac{2k+3}{2k-3}\)

\(\dfrac{2c+3d}{2c-3d}=\dfrac{2dk+3d}{2dk-3d}=\dfrac{2k+3}{2k-3}\)

Do đó: \(\dfrac{2a+3b}{2a-3b}=\dfrac{2c+3d}{2c-3d}\)

13 tháng 1 2017

a) \(a^2+2a+b^2-2b-2ab=\left(a-b\right)^2+2\left(a-b\right)\)

Thay a-b=7 vào trên ta được:

7^2+2*7=63

NV
30 tháng 6 2020

d/ \(\Leftrightarrow a^4-a^3b+b^4-ab^3\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

e/ \(\Leftrightarrow a^6+b^6+a^5b+ab^5\ge a^6+b^5+a^4b^2+a^2b^4\)

\(\Leftrightarrow a^5b-a^4b^2+ab^5-a^2b^4\ge0\)

\(\Leftrightarrow a^4b\left(a-b\right)-ab^4\left(a-b\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow ab\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng)

f/ \(\frac{a^6}{b^2}+a^2b^2\ge2\sqrt{\frac{a^8b^2}{b^2}}=2a^4\) ; \(\frac{b^6}{a^2}+a^2b^2\ge2b^4\)

\(\Rightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge2a^4+2b^4-2a^2b^2\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^4+b^4-2a^2b^2\right)\)

\(\Leftrightarrow\frac{a^6}{b^2}+\frac{b^6}{a^2}\ge a^4+b^4+\left(a^2-b^2\right)^2\ge a^4+b^4\)

NV
30 tháng 6 2020

a/ \(VT=a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)\)

\(VT=a^2+b^2+c^2+a^2b^2+b^2c^2+c^2a^2\)

\(VT\ge6\sqrt[6]{a^6b^6c^6}=6\left|abc\right|\ge6abc\)

Dấu "=" xảy ra khi \(a=b=c=1\)

b/ \(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)

c/ \(\Leftrightarrow\frac{a^3+b^3}{2}\ge\frac{a^3+b^3+3a^2b+3ab^2}{8}\)

\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Dấu "=" xảy ra khi \(a=b\)

29 tháng 9 2019

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}=VP\)

Đẳng thức xảy ra khi a = b = c

Câu a : \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

\(\Leftrightarrow\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{9}{2}\)

\(VT=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\ge\frac{\left(a+b+c\right).9}{2\left(a+b+c\right)}=\frac{9}{2}\) (đpcm)

Dấu "\("="\) xảy ra khi \(a=b=c\)

Câu b : \(VT=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\left(đpcm\right)\)

Dấu = xảy ra khi a=b=c