Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow cosA=\dfrac{13^2+15^2-12^2}{2\cdot13\cdot15}=\dfrac{25}{39}\)
=>\(\widehat{A}\simeq50^0\)
b: Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
=>\(\dfrac{5^2+8^2-BC^2}{2\cdot5\cdot8}=cos60=\dfrac{1}{2}\)
=>\(25+64-BC^2=40\)
=>\(BC^2=49\)
=>BC=7
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{1}{32}\)
\(\Rightarrow A\approx92^0\)
\(p=\dfrac{AB+AC+BC}{2}=\dfrac{31}{2}\)
\(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\simeq40\)
\(r=\dfrac{S}{p}=\dfrac{80}{31}\)
AC2 = AB2 + BC2 - 2.AB.BC.cos(60)
⇒ AC2 = 27
⇒ AC = 3\(\sqrt{3}\)
\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}=\dfrac{BC}{sinA}\)
⇒ \(\dfrac{3}{sinC}=\dfrac{6}{sinA}=\dfrac{3\sqrt{3}}{sin60}\)
⇒ \(\left\{{}\begin{matrix}sinA=1\\sinC=\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\widehat{A}=90^0;\widehat{C}=30^0\)
Đầu tiên để dựng điểm M: cậu lấy P trên BC sao cho BP+AB=AC(cái này dễ đúng ko), rồi lấy M là trung điểm của CP.
Dựng đường cao AH của tam giác, cậu có ngay AH=1/2 AC(tam giác ACH vuông tại H và C =90 độ)
nếu tớ gọi
độ dài cạnh BC là a thì
ta có AB=1/2a
AC = căn3/2a.
AH =căn3/4 a
BH = 1/2 AB = 1/4a (tam giác AHB vuông tại H có B = 60 độ)
ta có: CM = 1/2CP = 1/2(CB - BP) = 1/2(CB - (AC - AB)) = a.(3 - căn3)/4
ta lại có: MH = BC - CM - HB = a.căn3/4
vậy ta xét tam giác AMH có tan góc AMH = AH/MH = 1 vậy có góc AMH = 45 độ
xét tam giác ABM có góc BAM = 180 - ABM - AMB = 180 - 60 - 45 =75 độ
\(AC=\sqrt{AB^2+BC^2-2AB.BC.cosB}=\sqrt{9^2+12^2-2.9.12.cos60^0}=3\sqrt{13}\)
Đặt AB = c ; AC = b ; BC = a .
Ta có : \(b+c=13\) ; \(r=\dfrac{S}{p}=\sqrt{3}\) ( p \(=\dfrac{a+b+c}{2}\) )
Có : \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\) nên : \(r=\sqrt{\dfrac{\left(p-a\right)\left(p-b\right)\left(p-c\right)}{p}}=\sqrt{3}\)
\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)=3p\)
\(\Leftrightarrow\left(\dfrac{-a+b+c}{2}\right)\left(\dfrac{-b+a+c}{2}\right)\left(\dfrac{-c+a+b}{2}\right)=\dfrac{3\left(a+b+c\right)}{2}\)
\(\Leftrightarrow\left(-a+b+c\right)\left(-b+a+c\right)\left(-c+a+b\right)=12\left(a+b+c\right)\)
\(\Leftrightarrow\left(-a+13\right)\left(-b+a+c\right)\left(-c+a+b\right)=12\left(13+a\right)\)
\(\Leftrightarrow\left(-a+13\right)\left[a^2-\left(b-c\right)^2\right]=12\left(13+a\right)\) (2)
Có : \(\dfrac{b^2+c^2-a^2}{2bc}=cosA=cos60^o=\dfrac{1}{2}\) \(\Rightarrow b^2+c^2-a^2=bc\) \(\Leftrightarrow a^2=b^2+c^2-bc\) (1)
Mặt khác : \(b+c=13\Leftrightarrow b^2+c^2-bc+3bc=169\Leftrightarrow a^2=169-3bc\)
Từ (1) ; (2) suy ra : \(\left(-a+13\right)bc=12\left(13+a\right)\)
\(\Leftrightarrow\left(-a+13\right)\left(169-a^2\right)=36\left(13+a\right)\)
\(\Leftrightarrow\left(13-a\right)^2\left(13+a\right)=36\left(13+a\right)\)
\(\Leftrightarrow\left(13-a\right)^2=36\) \(\Leftrightarrow\left[{}\begin{matrix}13-a=6\\13-a=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}a=7\\a=19>13=b+c\left(L\right)\end{matrix}\right.\)
Vậy ...
\(\cos BCA=\dfrac{BC^2+AC^2-AB^2}{2\cdot AC\cdot BC}\)
\(\Leftrightarrow5^2+3^2-AB^2=2\cdot3\cdot5\cdot\dfrac{1}{2}=15\)
hay \(AB=\sqrt{19}\left(cm\right)\)