Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
biến đổi về dạng chuẩn rồi dùng t/c của dãy tỉ số bằng nhau
a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)
8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)
=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)
=> x = 24,y = 15,z = 6
b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)
\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)
=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)
=> x = -165 , y = -20 , z = -25
c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k
=> xyz = 12k . 9k . 5k
=> xyz = 540k3
=> 540k3 =20
=> k3 = 20/540
=> k3 = 1/27
=> k = 1/3
Do đó : x= 4 , y = 3 , z = 5/3
\(5x=8y\)
\(\Rightarrow\frac{x}{8}=\frac{y}{5}\)hay \(\frac{y}{5}=\frac{x}{8}\)
Theo đề, ta có: \(y-x=-12\)
\(\Rightarrow\frac{y}{5}=\frac{x}{8}=\frac{y-x}{5-8}=\frac{-12}{-3}=4\)
\(\Rightarrow y=5.4=20\)
\(\Rightarrow x=4.8=32\)
Ta có : \(5x=8y\)
\(\Rightarrow\) \(\frac{x}{8}=\frac{y}{5}=\frac{y-x}{5-8}=\frac{-12}{-3}=4\)
\(\Rightarrow\) \(x=32;y=20\)
Chúc bạn học tốt !
1a) \(0,31:0,91=x:\frac{49}{3}\)
=> \(\frac{0,31}{0,91}=\frac{3x}{49}\)
=> \(3x=\frac{3}{7}.49\)
=> \(3x=21\)
=> \(x=21:3=7\)
b) \(6,88:x=12:27\)
=> \(\frac{6,88}{x}=\frac{12}{27}\)
=> \(x=6,88:\frac{4}{9}\)
=> \(x=15,48\)
c) \(\frac{25}{3}:\frac{35}{3}=13:2x\)
=> \(\frac{13}{2x}=\frac{5}{7}\)
=> \(2x=13:\frac{5}{7}\)
=> \(2x=\frac{91}{5}\)
=> \(x=\frac{91}{5}:2=\frac{91}{10}\)
d) \(\left(x-1\right):24,5=5:8,75\)
=> \(\frac{x-1}{24,5}=\frac{5}{8,75}\)
=> \(x-1=\frac{4}{7}.24,5\)
=> \(x-1=14\)
=> \(x=14+1=15\)
2a) Ta có: \(\frac{x}{y}=\frac{5}{7}\) => \(\frac{x}{5}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{5}=\frac{y}{7}=\frac{x+y}{5+7}=\frac{4,08}{12}=0,34\)
=> \(\hept{\begin{cases}\frac{x}{5}=0,34\\\frac{y}{7}=0,34\end{cases}}\) => \(\hept{\begin{cases}x=0,34.5=1,7\\y=0,34.7=2,38\end{cases}}\)
Vậy x = 1,7; y = 2,38
b) Ta có: \(\frac{x}{y}=-\frac{3}{7}\) => \(\frac{x}{-3}=\frac{y}{7}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{-3}=\frac{y}{7}=\frac{x-y}{-3-7}=\frac{-40}{-10}=4\)
=> \(\hept{\begin{cases}\frac{x}{-3}=4\\\frac{y}{7}=4\end{cases}}\) => \(\hept{\begin{cases}x=4.\left(-3\right)=-12\\y=4.7=28\end{cases}}\)
vậy x = -12; y = 28
c) Ta có: \(\frac{x}{y}=\frac{3}{5}\) => \(\frac{x}{3}=\frac{y}{5}\)
Đặt : \(\frac{x}{3}=\frac{y}{5}=k\) => \(\hept{\begin{cases}x=3k\\y=5k\end{cases}}\) (*)
Khi đó, ta có: xy = 1215
hay 3k. 5k = 1215
=> 15k2 = 1215
=> k2 = 1215 : 15 = 81
=> k = \(\pm\)9
Thay k = \(\pm\)9 vào (*), ta được:
+) x = 3. (\(\pm\)9) = \(\pm\)27
+) y = 5. (\(\pm\)9) = \(\pm\)45
Vậy ...
A)Ta có:
y=-12+x
5x=8y
<=>5x=8(-12+x)
<=>5x=-96+8x
<=>-3x=-96
<=>x=32
=>y=20
B)Ta có:
x=40-y
x/y=7/13
<=>(40-y)/y=7/13
<=>(40-y).13=7y
<=>520-13y=7y
<=>20y=520
<=>y=26
=>x=14