Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c,3a2−6ab+3b2−12c2=3(a2−2ab+b2−4c2)=3.((a−b)2−(2c)2)
=3(a−b−2c).(a−b+2c)
d,x2−25+y2−2xy=(x2−2xy+y2)−52=(x−y)2−52
=(x−y+5)(x−y−5)
e,a2+2ab+b2−ac−bc=(a+b)2−c(a+b)=(a+b)(a+b−c)
ƒ ,x2−2x−4y2−4y=(x2−4y2)−(2x+4y)=(x−2y)(x+2y)−2(x+2y)
=(x+2y)(x−2y−2)
h,x2(x−1)+16(1−x)=x2(x−1)−16(x−1)=(x−1)(x2−16)=
=(x−1)(x−4)(x+4)
1. P/tích làm sao đc
2. Bạn làm đúng rồi nhưng còn 1 cách:
từ \(\left(x-2\right)\left(x^2+6x+5\right)=\left(x-2\right)\left(\left(x^2+x\right)+\left(5x+5\right)\right)=\left(x-2\right)\left(x\left(x+1\right)+5\left(x+1\right)\right)=\left(x-2\right)\left(x+1\right)\left(x+5\right)\)
bài 2 nè
a+b+c = 0
=>(a+b+c)^3 = 0
a^3 + b^3 + c^3 + 3(a+b)(b+c)(a+c) = 0
vì a+b = -c
a+c = -b
b+c = -a
thay vào => a^3 + b^3 + c^3 - 3abc = 0
=> a^3 + b^3 + c^3 = 3abc
a) Có x2-6x+10=(x2-2.x.3+32)+1=(x-3)2+1
Vì (x-3)2 ≥0 với mọi x
nên (x-3)2+1>0 với mọi x
b) Có 4x-x2-5=-(x2-4x+4)-1=-(x2-2.x.2+22)-1=-(x-2)2-1
Vì -(x-2)2≤0 với mọi x
nên -(x-2)2-1<0 với mọi x
c)Gỉa sử (x+5)(x-3)+20>0 là đúng thì
⇔x2-3x+5x-15+20>0
⇔x2+2x+5>0 ⇔(x2+2x.1+12)+4>0 ⇔(x+1)2+4>0
Vì (x+1)2 >=0 với mọi x
Nên (x+1)2+4>0 là đúng
Vậy (x+5)(x-3)+20>0 với mọi x
a) \(6x-6y=6\left(x-y\right)\)
b)\(2xy+3x+6y+xz\)
\(=\left(2xy+xz\right)+\left(6y+3z\right)\)
\(=x\left(2y+z\right)+3\left(2y+z\right)\)
\(=\left(2y+z\right)\left(x+3\right)\)
c)\(x^2+6x+9-y^2\)
\(=\left(x^2+6x+9\right)-y^2\)
\(=\left(x+3\right)^2-y^2\)
\(=\left(x-y+3\right)\left(x+y+3\right)\)
d) \(9x-x^3\)
\(=x\left(9-x^2\right)\)
\(=x\left(3-x\right)\left(3+x\right)\)
e)\(x^2-xy+x-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
a, 6x - 6y = 6( x-y )
b, 2xy + 3z + 6y + xz
= ( 2xy + 6y ) + ( 3z + xz )
= 2y( x + 3 ) + z ( 3 + x )
= 2y( 3 + x ) + z ( 3 + x )
= ( 3 + x ) ( 2y + z )
c, x2 + 6x + 9 - y2 = ( x2 + 6x + 9 ) - y2
= ( x + 3 )2 - y2
= ( x + 3 - y ) ( x + 3 + y )
d , 9x - x3 = x ( 9 - x2 )
= x ( 3 - x ) ( 3 + x )
e, x2 - xy + x - y =( x 2 - xy ) + ( x - y )
= x ( x - y ) + ( x - y )
= ( x - y ) ( x + 1 )
a) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2x+10-x^2-5x=0\)
\(\Leftrightarrow-x^2-3x+10=0\)
\(\Leftrightarrow x^2+3x-10=0\)
\(\Leftrightarrow x^2-2x+5x-10=0\)
\(\Leftrightarrow x\left(x-2\right)+5\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}}\)
b) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow\left(x^3-8\right)-\left(6x^2-12x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-6x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4-6x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
c)\(16x^2-9\left(x+1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2-\left[3\left(x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(4x-3x-1\right)\left(4x+3x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(7x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\7x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{1}{7}\end{cases}}}\)
d) \(x^3+x=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)
e)\(x^2-2x-3=0\)
\(\Leftrightarrow x^2+x-3x-3=0\)
\(\Leftrightarrow x\left(x+1\right)-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
5(x-3) = x2 - 6x + 9
5.(x-3) = (x-3)2
(x-3)2 - 5.(x-3) = 0
(x-3)( x-3 -5) =0
(x-3)(x-8) =0
\(\left[{}\begin{matrix}x-3=0\\x-8=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=8\end{matrix}\right.\)
vậy x ϵ { 3; 8}
b, x2 - x - 72
=(x2 - 64) - x - 8
= (x-8)(x+8) -(x+8)
=(x+8)(x-8 -1)
= (x+8)(x-9)