Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2 (x + 5) - x2 - 5x = 0
=> 2 (x + 5) - (x2 + 5x) = 0
=> 2 (x + 5) - x (x + 5) = 0
=> (2 - x) (x + 5) = 0
Có 2 TH xảy ra :
TH1 : 2 - x = 0 => x = 2
TH2 : x + 5 = 0 => x = -5
a, 2\((\)x +5\()\) - x2 - 5x =0
\(\Leftrightarrow\) 2x2 +10-x2 - 5x=0
\(\Leftrightarrow\)x2 - 5x +10=0
\(\Delta'\) = \((\) -5\()\)2 - 1. 10=15 \(\Rightarrow\) \(\sqrt{\Delta'}\) = \(\sqrt{15}\)
\(\Rightarrow\) x1 = 5 + \(\sqrt{15}\) ; x2 = 5- \(\sqrt{15}\)
pt có 2 nghiệm ........
b, 2x2 + 3x -5 =0
có a+b+c= 2+3+ \((\) -5\()\) =0
\(\Rightarrow\) x1=1 , x2 =\(\dfrac{-5}{2}\)
c, \((\) x-1\()\)2 + 4.\((x+2)\) - \((x^2-3)\)=0
\(\Rightarrow x^2-2x+1+4x+8-x^{2^{ }}+3=0\)
\(\Leftrightarrow\) -2x +12 =0
\(\Leftrightarrow\)-2x=-12\(\Leftrightarrow\) x= 6
a: Ta có: \(2x^3-5x^2+8x-3=0\)
\(\Leftrightarrow2x^3-x^2-4x^2+2x+6x-3=0\)
=>2x-1=0
hay x=1/2
a) \(4x-7>0\Leftrightarrow4x>7\)\(\Leftrightarrow x>\frac{7}{4}\)
b) \(-5x+8>0\Leftrightarrow5x<8\Leftrightarrow x<\frac{8}{5}\)
c)\(9x-10\le0\Leftrightarrow9x\le10\)\(\Leftrightarrow x\le\frac{10}{9}\)
d) \(\left(x+1\right)^2+4\le x^2+3x+10\)\(\Leftrightarrow x^2-2x+1+4\le x^2+3x+10\)
\(\Leftrightarrow5x\ge-5\Leftrightarrow x\ge-1\)
a,
4x - 7 > 0
↔ 4x > 7
↔ x > \(\dfrac{7}{4}\)
Vậy tập nghiệm của bất phương trình là S = { x / x>\(\dfrac{7}{4}\) }
b,
-5x + 8 > 0
↔ 8 > 5x
↔ \(\dfrac{8}{5}\) > x
Vậy tập nghiệm của bất phương trình là S = { x / \(\dfrac{8}{5}\) > x }
c,
9x - 10 ≤ 0
↔ 9x ≤ 10
↔ x ≤ \(\dfrac{10}{9}\)
Vậy tập nghiệm của bất phương trình là S = { x / x ≤ \(\dfrac{10}{9}\) }
d,
( x - 1 )\(^2\) + 4 ≤ x\(^2\) + 3x + 10
↔ x\(^2\) - 2x +1 +4 ≤ x\(^2\) + 3x + 10
↔ 1 + 4 - 10 ≤ x \(^2\) - x\(^2\) + 3x + 2x
↔ -5 ≤ 5x
↔ -1 ≤ x
Vậy tập nghiệm của bất phương trình là S = { x / -1 ≤ x}
(12x-1)(6x-1)(4x-1)(3x-1)=5
<=>(12x-1)(12x-2)(12x-3)(12x-4)=40
<=>[(12x-1)(12x-4)] [(12x-2)(12x-3)] =40
<=>(144x^2 - 60x + 4) (144x^2 - 60x + 6) =40
đặt 144x^2 - 60x +4 = t =>144x^2 - 60x +6 = t+2
ta có phương trình:
t ( t+2 ) =40
<=> t^2 + 2t -40 =0
<=> (t+1)^2 -39 =0
<=> t+1=\(\sqrt{39}\) hoặc t+1=\(-\sqrt{39}\) <=> x=\(\sqrt{39}\) -1 hoặc x=\(-\sqrt{39}\) -1
bạn ơi, xem lại đề ra 1 chút, hình như có câu sai đề thì phải
a) \(5-3x=6x-7\)
\(5=6x-7+3x\)
\(9x-7=5\)
\(9x=5+7=12\)
\(x=\frac{12}{9}=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
b) \(11-2x=x-1\)
\(11=x-1+2x\)
\(3x-1=11\)
\(3x=12\)
\(x=12:3=4\)
Vậy \(x=4\)