K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2014

ta có 4. A = 42 + 43 + 44 + ....... + 4101

nên 3.A  = 42 + 43 + 4+ ...... +...4101- 4 - 42 - 43 - ......- 4100

        3.A =  4101 - 4

=> 3A + 4 = 4101

vậy n = 101

26 tháng 12 2014

A=4+4^2+4^3+...+4^100

4a-a=4.(4+4^2+4^3+...4^100)-a.(4+4^2+4^3+4^100)

4a=4.4+4.4^2+...+4+4^100-a.4^2...-a.4^100

4a=4^101-4=4^n=n=$^100

1 tháng 4 2022

3/4 +3 =

15 tháng 10 2015

a) B = 1 + 4 + 42 + ... + 4100

4B = 4 + 42 + ... + 4101

4B - B = 4101 - 1

3B = 4101 - 1

=> 4101 - 1 + 1 = 4n

=> 4101 = 4n

=> n = 101

 

11 tháng 2 2019

a , Ta có :

M = 3 + 32 + ... + 3100

   = 3 . ( 1 + 3 ) + ... + 399 . ( 1 + 3 )

   = 3 . 4 + ...... + 399 . 4

   = 4 . ( 3 + ... + 399 ) \(⋮\)4

 

11 tháng 2 2019

a , M = 3 + 32 + ... + 3100

        = 1 . ( 3 + 32 ) + ... + 398 . ( 3 + 32 )

        =  1 . 12 + ... + 398 . 12

        =  12 . ( 1 + ... + 398 ) \(⋮\)12 

7 tháng 5 2016

1. Ta có:

3A = 3^2 + 3^3+3^4+...+3^101

=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)

<=> 2A= 3^101-3

=> 2A +3 = 3^101

Mà 2A+3=3^n

=> 3^101 = 3^n => n=101

7 tháng 5 2016

2. M=3+32+33+34+...+3100

=>3M=32+33+34+35+...+3101

=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé) 

=>   M=\(\frac{3^{101}-3}{2}\)

a) Ta co : 3101=(34)25 .3=8125.3

Bạn học đồng dư thức rồi thì xem:

  Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)

=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8

=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)

Ma M=3101-3 chia hết cho 3                              (2)

Từ (1) và (2) => M chia hết cho 12

b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)

=> 3101-3 +3 =3n

=> 3101=3n=> n = 101

     

                                   

26 tháng 3 2016

2555555555555555555555555