Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A= \(2+2^2+2^3+....+2^{21}\)
=> A= \(2+2^2\left(2^3+2^4\right)+2^5\left(2^3+2^4\right)+......+2^{18}\left(2^3+2^4\right)+2^{21}\)
=> A=\(2+2^2.14+2^5.14+.....+2^{18}.14+2^{21}\)
Vì trong A có thừa số 14 nên A chia hết cho 14
A=(2+22+23)+(24+25+26)+...+(219+220+221)=14+23(2+22+23)+...+218(2+22+23)
A=14+23.14+...+218.14=14(1+23+26+...+215+218) chia hết cho 14
<=> x2 - 2x + 4x - 8 - 2 = 0
<=> x2 + 2x - 10 = 0
<=> (x + 1)2 = 11 => \(\orbr{\begin{cases}x+1=\sqrt{11}\\x+1=-\sqrt{11}\end{cases}\leftrightarrow\orbr{\begin{cases}x=\sqrt{11}-1\\x=-\sqrt{11}-1\end{cases}}}\)
Vậy ...
\(\Rightarrow x^2-2x+4x-8=2\)
\(\Rightarrow x^2-2x+4x=10\)
\(\Rightarrow x\left(x-2+4\right)=10\)
\(A=3x-x^2\)
\(=-\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=-\left(\left(x-\frac{3}{2}\right)^2-\frac{9}{4}\right)\)
\(=\frac{9}{4}-\left(x-\frac{3}{2}\right)^2\ge\frac{9}{4}\)
Min A = \(\frac{9}{4}\)khi \(x-\frac{3}{2}=0=>x=\frac{3}{2}\)
\(B=25+2x-x^2\)
\(=-\left(x^2-2x+1-26\right)\)
\(=-\left(\left(x-1\right)^2-26\right)\)
\(=26-\left(x-1\right)^2\ge26\)
Min A = 26 khi \(x-1=0=>x=1\)
\(C=x^2-5x+19\)
\(=x^2-2.x.\frac{5}{2}+\left(\frac{5}{2}\right)^2+\frac{51}{4}\)
\(=\left(x+\frac{5}{2}\right)^2+\frac{51}{4}\ge\frac{51}{4}\)
Min C = \(\frac{51}{4}\)khi \(x+\frac{5}{2}=0=>x=\frac{-5}{2}\)
@@@ nha các bạn . Thanks